欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

8.已知e為自然對(duì)數(shù)的底數(shù),若對(duì)任意的x∈[0,1],總存在唯一的y∈[-1,1],使得x+y2ey-a=0成立,則實(shí)數(shù)a的取值范圍是( 。
A.[1,e]B.$(1+\frac{1}{e},e]$C.(1,e]D.$[1+\frac{1}{e},e]$

分析 由x+y2ey-a=0成立,解得y2ey=a-x,根據(jù)題意可得:a-1≥(-1)2e-1,且a-0≤12×e1,解出并且驗(yàn)證等號(hào)是否成立即可得出.

解答 解:由x+y2ey-a=0成立,解得y2ey=a-x,
∴對(duì)任意的x∈[0,1],總存在唯一的y∈[-1,1],使得x+y2ey-a=0成立,
∴a-1≥(-1)2e-1,且a-0≤12×e1,
解得$1+\frac{1}{e}$≤a≤e,其中a=1+$\frac{1}{e}$時(shí),y存在兩個(gè)不同的實(shí)數(shù),因此舍去,a的取值范圍是$(1+\frac{1}{e},e]$.
故選:B.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=|x-3|,g(x)=-|x+4|+2m.
(1)當(dāng)a>0時(shí),求關(guān)于x的不等式f(x)+1-a>0(a∈R)的解集;
(2)若函數(shù)f(x)的圖象恒在函數(shù)g(x)圖象的上方,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在三角形ABC中,$\overrightarrow{BC}=3\overrightarrow{BD},\overrightarrow{AB}•\overrightarrow{AC}=\frac{1}{2},∠A=\frac{π}{3}$,則$|\overrightarrow{AD}|$的最小值為$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.斜率為1的直線與橢圓x2+4y2=4交于A,B兩點(diǎn),則|AB|的最大值為$\frac{4\sqrt{10}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知數(shù)列{an}的前n項(xiàng)和${S_n}=2{n^2}-n$,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若${b_n}={({-1})^n}{a_n}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知集合M={x|x<0},N={x|x2-x-2<0},則M∩N=( 。
A.{x|-1<x<0}B.{x|-2<x<0}C.{x|x<2}D.{x|x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)$f(x)=lnx-\frac{a(x-1)}{x+1},a∈R$.
(Ⅰ)若x=3是函數(shù)f(x)的極值點(diǎn),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)f(x)在(0,+∞)上為單調(diào)增函數(shù),求a的取值范圍;
(Ⅲ)設(shè)m,n為正實(shí)數(shù),且m>n,求證:$\frac{m-n}{lnm-lnn}<\frac{m+n}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,在正方體ABCD-A1B1C1D1中,M,N,P分別為棱AB,BC,C1D1的中點(diǎn).
求證:(1)AP∥平面C1MN;
(2)平面B1BDD1⊥平面C1MN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在直角坐標(biāo)系xOy中,曲線C1:$\left\{\begin{array}{l}{x=1+cosφ}\\{y=sinφ}\end{array}\right.$(φ為參數(shù),0<φ<π),曲線C2與曲線C1關(guān)于原點(diǎn)對(duì)稱,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C3的極坐標(biāo)方程為ρ=2(0<θ<π),過(guò)極點(diǎn)O的直線l分別與曲線C1,C2,C3相交于點(diǎn)A,B,C.
(Ⅰ)求曲線C1的極坐標(biāo)方程;
(Ⅱ)求|AC|•|BC|的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案