分析 (1)先求出函數(shù)的導(dǎo)數(shù),再根據(jù)零點的判定定理結(jié)合二次函數(shù)的性質(zhì)判斷即可;
(2)由f(x)=x[ax2+bx+(b-a)],(a≠0),令g(x)=ax2+bx+(b-a),根據(jù)二次函數(shù)的性質(zhì)判斷出g(x)的零點個數(shù)即可.
解答 (1)證明:f′(x)=3ax2+2bx+(b-a),(a≠0),
由f′(-1)=3a-2b+b-a=2a-b①,
由f′(-$\frac{1}{3}$)=3a•$\frac{1}{9}$+2b•(-$\frac{1}{3}$)+b-a=$\frac{1}{3}$(b-2a)②,
∵b≠2a
顯然:f′(-1)•f′(-$\frac{1}{3}$)<0,
∴函數(shù)f(x)的導(dǎo)函數(shù)f′(x)在區(qū)間(-1,-$\frac{1}{3}$)內(nèi)有唯一零點;
(2)解:f(x)=ax3+bx2+(b-a)x
=x[ax2+bx+(b-a)],(a≠0),
令g(x)=ax2+bx+(b-a),
△=b2-4a(b-a)=4a2-4ab+b2=(2a-b)2,
∵b≠2a,
∴△>0,
∴g(x)有2個不相等的實數(shù)根,
∴函數(shù)f(x)有3個零點.
點評 本題考查了導(dǎo)數(shù)的應(yīng)用,考查函數(shù)的零點問題,考查二次函數(shù)的性質(zhì),是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{59}{72}$ | B. | $\frac{7}{12}$ | C. | $\frac{17}{72}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (0,+∞) | B. | (-4,+∞) | C. | [-4,+∞) | D. | (-6,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | {x|x<-2} | B. | {x|2<x<3} | C. | {x|x>3} | D. | {x|x<-2或2<x<3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2 | B. | $\frac{4}{3}$ | C. | -2 | D. | $-\frac{4}{3}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com