欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

1.南昌市一次聯(lián)考后,某校對甲、乙兩個文科班的數(shù)學(xué)考試成績進(jìn)行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分一下為非優(yōu)秀,統(tǒng)計成績后,得到如下的2×2列聯(lián)表,且已知在甲、乙兩個文科班全部120人中隨機(jī)抽取1人為優(yōu)秀的概率為$\frac{1}{3}$
優(yōu)秀非優(yōu)秀合計
甲班115061
乙班293059
合計4080120
(1)請完成上面的列聯(lián)表
(2)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取一人,把甲班優(yōu)秀的11名學(xué)生從2到12進(jìn)行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數(shù)之和為被抽取人的序號,試求抽到9號或10號的概率.

分析 (1)由題意,優(yōu)秀總?cè)藬?shù)為120×$\frac{1}{3}$=40,非優(yōu)秀總?cè)藬?shù)為120-40=80,從而依次求各個數(shù)據(jù)即可;
(2)設(shè)“抽到9或10號”為事件A,可得所有的基本事件有36種,事件A包含的基本事件有:(3,6),(4,5),(5,4),(6,3),(4,6),(5,5),(6,4)共7個基本事件;從而求概率.

解答 解:(1)由題意,優(yōu)秀總?cè)藬?shù)為120×$\frac{1}{3}$=40,
乙班優(yōu)秀人數(shù)為:40-11=29,
非優(yōu)秀總?cè)藬?shù)為120-40=80,
甲班非優(yōu)秀人數(shù)為:80-30=50,
甲班人數(shù)為:11+50=61,
乙班人數(shù)為:29+30=59;
(2)設(shè)“抽到9或10號”為事件A,
則所有的基本事件有36種,
事件A包含的基本事件有:(3,6),(4,5),(5,4),(6,3),(4,6),(5,5),(6,4)共7個基本事件;
故P(A)=$\frac{7}{36}$;
即求抽到9號或10號的概率為$\frac{7}{36}$.

點評 本題考查了列聯(lián)表的應(yīng)用及古典概型的概率的求法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知$|{\overrightarrow a-\overrightarrow b}|=\sqrt{6},|{\overrightarrow a+\overrightarrow b}|=\sqrt{10}$,則$\overrightarrow{a}$•$\overrightarrow$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x,x≥0}\\{-x,x<0}\end{array}\right.$,若關(guān)于x的方程f(x)=t有3個不等根x1,x2,x3,且x1<x2<x3,則x3-x1的取值范圍為( 。
A.(2,$\frac{5}{2}$]B.(2,$\frac{9}{4}$]C.(2,$\frac{11}{4}$]D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖所示,某班一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,其中,頻率分布直方圖的分組區(qū)間分別為[50,60),[60,70),[70,80),[80,90),[90,100),據(jù)此解答如下問題.

(1)求全班人數(shù)及分?jǐn)?shù)在[80,100]之間的頻率;
(2)現(xiàn)從分?jǐn)?shù)在[80,100]之間的試卷中任取 3 份分析學(xué)生失分情況,設(shè)抽取的試卷分?jǐn)?shù)在[90,100]的份數(shù)為 X,求 X 的分布列和數(shù)學(xué)望期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)和圓x2+y2=b2,設(shè)橢圓的左、右焦點分別為F1,F(xiàn)2,上頂點為Q,過橢圓上一點P引圓O的兩條切線,切點分別為A、B.
(1)①若$\overrightarrow{Q{F}_{1}}$⊥$\overrightarrow{Q{F}_{2}}$,求橢圓的離心率e;
②若橢圓上存在點P,使得∠APB=60°,求橢圓離心率e的取值范圍;
(2)設(shè)直線AB與x軸、y軸分別交于M,N,求△MON面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知兩點A(1,0),B(1,$\sqrt{3}$),O為坐標(biāo)原點,點C在第二象限,且∠AOC=120°,設(shè)$\overrightarrow{OC}$=-2$\overrightarrow{OA}$+λ$\overrightarrow{OB}$(λ∈R)則λ=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=2lnx-x2+ax(a∈R).
(1)若函數(shù)f(x)的圖象在x=2處切線的斜率為-1,且不等式f(x)≥2x+m在$[\frac{1}{e},\;\;e]$上有解,求實數(shù)m的取值范圍;
(2)若函數(shù)f(x)的圖象與x軸有兩個不同的交點A(x1,0),B(x2,0),且0<x1<x2,求證:$f'(\frac{{{x_1}+{x_2}}}{2})<0$(其中f′(x)是f(x)的導(dǎo)函數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)y=f(x)與y=f-1(x)互為反函數(shù),又y=f-1(x+1)與y=g(x)的圖象關(guān)于直線y=x對稱,若f(x)=${log_{\frac{1}{2}}}({x^2}+2)$(x>0),則g(x)=log${\;}_{\frac{1}{2}}$(x2+2)-1(x>0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.一款擊鼓小游戲的規(guī)則如下:每盤游戲都需擊鼓三次,每次擊鼓要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂;每盤游戲擊鼓三次后,出現(xiàn)一次音樂獲得10分,出現(xiàn)兩次音樂獲得20分,出現(xiàn)三次音樂獲得100分,沒有出現(xiàn)音樂則扣除200分(即獲得-200分).設(shè)每次擊鼓出現(xiàn)音樂的概率為$\frac{1}{2}$,且各次擊鼓出現(xiàn)音樂相互獨(dú)立.
(Ⅰ)設(shè)每盤游戲獲得的分?jǐn)?shù)為X,求X的分布列;
(Ⅱ)玩三盤游戲,至少有一盤出現(xiàn)音樂的概率是多少?

查看答案和解析>>

同步練習(xí)冊答案