分析 利用三角恒等變換化簡(jiǎn)f(x)的解析式,再根據(jù)函數(shù)的最大值求出m,可得f(x)的解析式;再利用正弦函數(shù)的單調(diào)性求得f(x)的遞增區(qū)間.
解答 解:∵函數(shù)f(x)=2cos2x+2$\sqrt{3}$sinxcosx+m=cos2x+$\sqrt{3}$sin2x+1+m=2sin(2x+$\frac{π}{6}$)+m+1,
在區(qū)間[0,$\frac{π}{2}$]上,2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],∴sin(2x+$\frac{π}{6}$)∈[-$\frac{1}{2}$,1],
故f(x)的最大值為2+m+1,再根據(jù)f(x)的最大值為2,可得2+m+1=2,
故m=-1,f(x)=2sin(2x+$\frac{π}{6}$).
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈z,求得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,故函數(shù)的增區(qū)間為[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈z.
點(diǎn)評(píng) 本題主要考查三角恒等變換,正弦函數(shù)的定義域和值域,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2+i | B. | 2-i | C. | 1+2i | D. | 1-2i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $-\frac{4}{3}$ | B. | $\frac{4}{3}$ | C. | -3 | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{3}$ | B. | $\frac{5}{18}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com