分析 根據(jù)函數(shù)y=xf′(x)的圖象,依次判斷f(x)在區(qū)間(-∞,-1),(-1,0),(0,1),(1,+∞)上的單調(diào)性畫出函數(shù)f(x)的大致圖象,從而可以得到正確答案.
解答 解:由函數(shù)y=xf′(x)的圖象可知:
當(dāng)x<-1時,xf′(x)<0,f′(x)>0,此時f(x)增;
當(dāng)-1<x<0時,xf′(x)>0,f′(x)<0,此時f(x)減;
當(dāng)0<x<1時,xf′(x)<0,f′(x)<0,此時f(x)減;
當(dāng)x>1時,xf′(x)>0,f′(x)>0,此時f(x)增.
綜上所述,函數(shù)f(x)大致圖象如圖示:
,
故①④正確,
故答案為:①④.
點(diǎn)評 本題間接利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查函數(shù)的圖象問題.本題有一定的代表性,是一道好題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | {x|x≥3} | B. | {x|-2≤x-1} | C. | {x|x≤-2} | D. | {x|log23≤x≤2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 充分條件但不是必要條件 | B. | 必要條件但不是充分條件 | ||
| C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1 | B. | 2 | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com