分析 由h(x)=f(x)+g(x)+2,可得a的關(guān)系式,求出函數(shù)的值域,即可求實(shí)數(shù)a的取值范圍.
解答 解:由h(x)=f(x)+g(x)+2,可得a=$\frac{-|{x}^{2}-1|-{x}^{2}-4}{x}$=$\left\{\begin{array}{l}{-\frac{5}{x},x∈(0,1)}\\{-(2x+\frac{3}{x}),x∈[1,2]}\end{array}\right.$
x∈(0,1),a=-$\frac{5}{x}$單調(diào)遞增,且值域?yàn)椋?∞,-5);
x∈[1,2),k(x)=-(2x+$\frac{3}{x}$)先增后減,
∵k(1)=-5,k(x)max=-2$\sqrt{6}$,k(2)=-$\frac{11}{2}$,
∴-$\frac{11}{2}$<a<-2$\sqrt{6}$.
綜上,a的取值范圍是$(-\frac{11}{2},-2\sqrt{6})$.
故答案為:$(-\frac{11}{2},-2\sqrt{6})$.
點(diǎn)評 本題考查解不等式,考查分離參數(shù)法的運(yùn)用,考查函數(shù)的值域,屬于中檔題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1 m3 | B. | 2 cm3 | C. | 3 cm3 | D. | 6 cm3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com