| A. | ±$\frac{4}{5}$ | B. | ±$\frac{3}{4}$ | C. | $\frac{4}{5}$ | D. | $\frac{3}{4}$ |
分析 求出拋物線的準線方程,可得K的坐標,可設(shè)A($\frac{{m}^{2}}{2}$,m),B($\frac{{n}^{2}}{2}$,n),運用向量共線的坐標表示,解方程可得m,n,再由直線的斜率公式,計算即可得到所求值.
解答 解:拋物線y2=2x的準線l為x=-$\frac{1}{2}$,
即有K(-$\frac{1}{2}$,0),
由A,B在拋物線上,可設(shè)A($\frac{{m}^{2}}{2}$,m),B($\frac{{n}^{2}}{2}$,n),
由$\overrightarrow{AB}$=3$\overrightarrow{KA}$,可得$\frac{{n}^{2}}{2}$-$\frac{{m}^{2}}{2}$=3($\frac{{m}^{2}}{2}$+$\frac{1}{2}$),
且n-m=3(m-0),
解得m=$\frac{1}{2}$,n=2或m=-$\frac{1}{2}$,n=-2,
即有直線AB的斜率為k=$\frac{n-m}{\frac{{n}^{2}}{2}-\frac{{m}^{2}}{2}}$=$\frac{2}{m+n}$=$\frac{2}{\frac{1}{2}+2}$=$\frac{4}{5}$
或$\frac{2}{-\frac{1}{2}-2}$=-$\frac{4}{5}$.
故選:A.
點評 本題考查拋物線的方程及運用,考查向量共線的坐標表示,以及直線的斜率公式的運用,考查運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 90° | B. | 60° | C. | 45° | D. | 30° |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | y=x與y=$\frac{{x}^{2}}{x}$ | B. | y=($\sqrt{x}$)2-1與y=|x|-1 | C. | y=x2與y=$\root{3}{{x}^{6}}$ | D. | y=$\root{3}{{x}^{3}}與y=\sqrt{{x}^{2}}$ |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com