分析 (1)根據(jù)點P為雙曲線上一點,且PF2⊥F1F2,∠PF1F2=$\frac{π}{6}$,可得|PF1|=$\sqrt{3}$c,|PF2|=c,利用雙曲線的定義,可求雙曲線的離心率.
(2)由(1)可得b=$\sqrt{{c}^{2}-{a}^{2}}$=$\sqrt{3+2\sqrt{3}}$a,即可求雙曲線的漸近線方程.
解答 解:(1)設(shè)雙曲線的焦距長為2c
∵點P為雙曲線上一點,且PF2⊥F1F2,∠PF1F2=$\frac{π}{6}$,
∴|PF1|=$\sqrt{3}$c,|PF2|=c
∴|PF1|-|PF2|=($\sqrt{3}$-1)c=2a
∴e=$\frac{c}{a}$=$\frac{2}{\sqrt{3}-1}$=$\sqrt{3}$+1;
(2)c=($\sqrt{3}$+1)a,b=$\sqrt{{c}^{2}-{a}^{2}}$=$\sqrt{3+2\sqrt{3}}$a,
∴雙曲線的漸近線方程y=±$\sqrt{3+2\sqrt{3}}$x.
點評 本題考查雙曲線的定義與性質(zhì),解題的關(guān)鍵是確定|PF1|=$\sqrt{3}$c,|PF2|=c.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | an=$\frac{{n}^{2}-n+2}{2}$ | B. | an=$\frac{{n}^{2}-n+1}{2}$ | C. | an=$\frac{2}{{n}^{2}-n+1}$ | D. | an=$\frac{2}{{n}^{2}-n+2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com