欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

7.已知函數(shù)f(x)=ax2+x-a,a∈R.
(1)若函數(shù)f(x)有最大值$\frac{17}{8}$,求實(shí)數(shù)a的值;
(2)當(dāng)a<0時(shí),解不等式f(x)>1.

分析 (1)若函數(shù)f(x)有最大值$\frac{17}{8}$,則$\left\{\begin{array}{l}a<0\\ \frac{-4{a}^{2}-1}{4a}=\frac{17}{8}\end{array}\right.$,解得實(shí)數(shù)a的值;
(2)當(dāng)a<0時(shí),解不等式f(x)>1可化為:$(x-1)(x+\frac{a+1}{a})<0$,討論$-\frac{a+1}{a}$與1的大小,可得答案.

解答 解:(1)若函數(shù)f(x)有最大值$\frac{17}{8}$,
則$\left\{\begin{array}{l}a<0\\ \frac{{-4{a^2}-1}}{4a}=\frac{17}{8}\end{array}\right.$
解得:a=-2或a=-$\frac{1}{8}$,
(2)當(dāng)a<0時(shí),
ax2+x-a>1$⇒a{x^{2}}+x-a-{1}>0⇒a(x-1)(x+\frac{a+1}{a})>0$$⇒(x-1)(x+\frac{a+1}{a})<0$
當(dāng)$1>-\frac{a+1}{a}$,即a<$\frac{1}{2}$時(shí),$x∈(-\frac{a+1}{a},1)$;
當(dāng)$1<-\frac{a+1}{a}$,即$-\frac{1}{2}<a<0$時(shí),$x∈(1,-\frac{a+1}{a})$;
當(dāng)$1=-\frac{a+1}{a}$,即$a=-\frac{1}{2}$時(shí),x∈∅.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是二次函數(shù)的圖象和性質(zhì),二次不等式的解法,難度不大,熟練掌握二次函數(shù)的圖象和性質(zhì)是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,在四棱錐E-ABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.
(1)求棱錐C-ADE的體積;
(2)在線段DE上是否存在一點(diǎn)P,使AF∥平面BCE?若存在,求出$\frac{EF}{ED}$的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.下面四組表示的是同一函數(shù)的是( 。
A.$f(x)=x,g(x)={(\sqrt{x})^2}$B.f(x)=(x-1)0,g(x)=1
C.$f(x)=|x-1|,g(x)=\sqrt{{{(x-1)}^2}}$D.$f(x)=\sqrt{x-1}\sqrt{x+1},g(x)=\sqrt{{x^2}-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.等差數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn,且$\frac{S_n}{T_n}=\frac{3n+1}{n+3}$,則$\frac{{{a_2}+{a_{20}}}}{{{b_7}+{b_{15}}}}$=$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在平面直角坐標(biāo)系xOy中,過(guò)點(diǎn)P(4,0)作傾斜角為a的直線l,以原點(diǎn)O為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρ=1,將曲線C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的5倍,縱坐標(biāo)伸長(zhǎng)為原來(lái)的3倍,得到曲線C2,直線l與曲線C2交于不同的兩點(diǎn)M,N.
(1)求直線l的參數(shù)方程及曲線C2的普通方程.
(2)求$\sqrt{\frac{1}{|PM|•|PN|}}$的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:千元)對(duì)年銷(xiāo)售量y(單位:t)和年利潤(rùn)z(單位:千元)的影響,對(duì)近8年的宣傳費(fèi)xi和年銷(xiāo)售量yi(i=1,2,…,8)數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.(表中w1=$\sqrt{x}$1,$\overline w$=$\frac{1}{8}$$\sum_{i=1}^n{w_i}$)

$\overline x$$\overline y$$\overline w$$\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}$$\sum_{i=1}^n{{{({w_i}-\overline w)}^2}}$$\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}$$\sum_{i=1}^n{({w_i}-\overline w)({y_i}-\overline y)}$
46.65636.8289.81.61469108.8
(Ⅰ)根據(jù)散點(diǎn)圖判斷,y=a+bx與y=c+d$\sqrt{x}$,哪一個(gè)適宜作為年銷(xiāo)售量y關(guān)于年宣傳費(fèi)x的回歸方程類(lèi)型(給出判斷即可,不必說(shuō)明理由);
(Ⅱ)根據(jù)( I)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(Ⅲ)已知這種產(chǎn)品的年利潤(rùn)z與x,y的關(guān)系為z=0.2y-x,根據(jù)( II)的結(jié)果回答下列問(wèn)題:
(i)當(dāng)年宣傳費(fèi)x=90時(shí),年銷(xiāo)售量及年利潤(rùn)的預(yù)報(bào)值時(shí)多少?
(ii)當(dāng)年宣傳費(fèi)x為何值時(shí),年利潤(rùn)的預(yù)報(bào)值最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在銳角三角形ABC中,BC=2,AB=3,則AC的取值范圍是(  )
A.(1,$\sqrt{5}$)B.($\sqrt{5}$,$\sqrt{13}$)C.($\sqrt{13}$,5)D.($\sqrt{5}$,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知三個(gè)正數(shù)a,b,c滿(mǎn)足a≤b+c≤3a,3b2≤a(a+c)≤5b2,則$\frac{b-2c}{a}$的最小值是( 。
A.-$\frac{18}{5}$B.-3C.0D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知直線l過(guò)點(diǎn)(3,1),且傾斜角為直線x-2y-1=0傾斜角的2倍,則直線l的斜截式方程為4x-3y-9=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案