欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

3.定義在R上的奇函數(shù)f(x)和定義在{x|x≠0}上的偶函數(shù)g(x)分別滿足f(x)=$\left\{\begin{array}{l}{{2}^{x}-1(0≤x<1)}\\{\frac{1}{x}(x≥1)}\end{array}\right.$,g(x)=log2x(x>0),若存在實(shí)數(shù)a,使得f(a)=g(b)成立,則實(shí)數(shù)b的取值范圍是( 。
A.[-2,2]B.[-$\frac{1}{2}$,0)∪(0,$\frac{1}{2}$]C.[-2,-$\frac{1}{2}$]∪[$\frac{1}{2}$,2]D.(-∞,-2]∪[2,+∞)

分析 根據(jù)函數(shù)的奇偶性作出函數(shù)f(x)和g(x)的圖象,利用數(shù)形結(jié)合即可得到結(jié)論.

解答 解:分別作出函數(shù)f(x)和g(x)的圖象如圖,
若若存在實(shí)數(shù)a,使得f(a)=g(b)成立,
則b一定在函數(shù)g(x)使兩個(gè)函數(shù)的函數(shù)值重合的區(qū)間內(nèi),
∵函數(shù)f(x)的最大值為1,最小值為-1,
∴由log2x=1,解得x=2,
由log2(-x)=1,解得x=-2,
故b的取值范圍是[-2,-$\frac{1}{2}$]∪[$\frac{1}{2}$,2],
故選:C

點(diǎn)評(píng) 本題主要考查函數(shù)奇偶性的應(yīng)用,利用函數(shù)的奇偶性結(jié)合數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)f(x)=ln(x-2)的定義域?yàn)椋?,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若集合A={1,m,m2},集合B={2,4},則“m=-2”是“A∩B={4}”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知定義在R上的函數(shù)y=f(x)對(duì)任意x都滿足f(x+1)=-f(x),且當(dāng)0≤x<1時(shí),f(x)=x,則函數(shù)g(x)=f(x)-ln|x|的零點(diǎn)個(gè)數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.向量$\overrightarrow{a}$與$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{2}$,且$\overrightarrow{a}⊥\overrightarrow$,則|$\overrightarrow{a}+\overrightarrow$|為(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.向邊長(zhǎng)分別為$\sqrt{13}$、5、6的三角形區(qū)域內(nèi)隨機(jī)投一點(diǎn)D,則該點(diǎn)D與三角形三個(gè)頂點(diǎn)距離都大于$\sqrt{3}$的概率為( 。
A.0B.$1-\frac{π}{3}$C.$1-\frac{π}{6}$D.$1-\frac{π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x≥1}\\{x-2y+1≤0}\\{x+y-4≤0}\end{array}\right.$,此不等式組表示的平面區(qū)域的面積為$\frac{4}{3}$,目標(biāo)函數(shù)Z=2x-y的最小值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x+y-1≥0\\ x-y-1≤0\\ y-2≤0\end{array}\right.$,則z=2x+y的最小值是( 。
A.-4B.-2C.0D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)$f(x)=sin(2x-\frac{π}{6})+2{cos^2}x-1(x∈{R})$.
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知f(A)=$\frac{1}{2}$,且△ABC外接圓的半徑為$\sqrt{3}$,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案