分析 (1)寫(xiě)出等差數(shù)列{xn}的通項(xiàng)公式,利用Pn(xn,yn)位于函數(shù)$y=3x+\frac{13}{4}$的圖象上,即可求解點(diǎn)Pn的坐標(biāo).
(2)設(shè)拋物線Cn的方程為:$y=a{(x-{x_n})^2}+{y_n}$,利用導(dǎo)數(shù)求出過(guò)點(diǎn)Dn且與拋物線Cn相切的直線方程,化簡(jiǎn)$\frac{1}{{{k}_{n-1}}_{\;}{k}_{n}}$,利用列項(xiàng)求和求解即可.
解答 解:(1)∵Pn的橫坐標(biāo)構(gòu)成以$-\frac{5}{2}$為首項(xiàng),-1為公差的等差數(shù)列{xn},
∴${x_n}={x_1}+(n-1)d=-\frac{5}{2}-(n-1)=-n-\frac{3}{2}$,---------------------------------(2分)
∵Pn(xn,yn)位于函數(shù)$y=3x+\frac{13}{4}$的圖象上,
∴${y_n}=3{x_n}+\frac{13}{4}=3(-n-\frac{3}{2})+\frac{13}{4}=-3n-\frac{5}{4}$,---------------------------------------(3分)
∴點(diǎn)Pn的坐標(biāo)為${P_n}(-n-\frac{3}{2},-3n-\frac{5}{4})$------------------------------(4分)
(2)據(jù)題意可設(shè)拋物線Cn的方程為:$y=a{(x-{x_n})^2}+{y_n}$,
即$y=a{(x+n+\frac{3}{2})^2}-3n-\frac{5}{4}$,----------------------(5分)
∵拋物線Cn過(guò)點(diǎn)${D_n}(0,{n^2}+1)$,
∴${n^2}+1=a{(n+\frac{3}{2})^2}-3n-\frac{5}{4}=a{n^2}+(3a-3)n+\frac{9a}{4}-\frac{5}{4}$,
∴a=1,∴$y={(x+n+\frac{3}{2})^2}-3n-\frac{5}{4}$,-----------------------------(6分)
∵過(guò)點(diǎn)Dn且與拋物線Cn相切的直線即為以Dn為切點(diǎn)的切線,
∴${k_n}={\left.{y^'}\right|_{x=0}}={\left.{2(x+n+\frac{3}{2})}\right|_{x=0}}=2n+3$,-----------------------------------(7分)
∴$\frac{1}{{{k_{n-1}}{k_n}}}=\frac{1}{(2n+1)(2n+3)}=\frac{1}{2}(\frac{1}{2n+1}-\frac{1}{2n+3})$(n≥2)-----------------------------(8分)
∴$\frac{1}{{{k_1}{k_2}}}+\frac{1}{{{k_2}{k_3}}}+…+\frac{1}{{{k_{n-1}}{k_n}}}=\frac{1}{2}(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+…+\frac{1}{2n+1}-\frac{1}{2n+3})$=$\frac{1}{2}(\frac{1}{5}-\frac{1}{2n+3})$---------------------------------(9分)
∴$\frac{1}{{{k_1}{k_2}}}+\frac{1}{{{k_2}{k_3}}}+…+\frac{1}{{{k_{n-1}}{k_n}}}$=$\frac{1}{2}(\frac{1}{5}-\frac{1}{2n+3})<\frac{1}{10}$---------------------------(10分)
點(diǎn)評(píng) 本題考查數(shù)列與解析幾何結(jié)合題目,數(shù)列求和的方法,考查分析問(wèn)題解決問(wèn)題的能力.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{2}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{{2\sqrt{5}}}{5}$ | D. | $\frac{{4\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1 | B. | 1或±$\sqrt{3}$ | C. | ±$\sqrt{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 48對(duì) | B. | 63對(duì) | C. | 64對(duì) | D. | 72對(duì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | d>0,b>0 | B. | k>0,b<0 | C. | k<0,b>0 | D. | k<0,b<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 0° | B. | 30° | C. | 45° | D. | 60° |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com