分析 通過(guò)計(jì)算出前幾項(xiàng)的值猜想an=2n-1,再利用數(shù)學(xué)歸納法證明即可.
解答 解:依題意,a2=$\frac{2}{{a}_{2}-1}$,∴${{a}_{2}}^{2}$-a2-2=0,
解得:a2=2或a2=-1(舍),
a3=$\frac{8}{{a}_{3}-2}$,∴${{a}_{3}}^{2}$-2a3-8=0,
解得:a3=4或a3=-2(舍),
a4=$\frac{32}{{a}_{4}-4}$,∴${{a}_{4}}^{2}$-4a4-32=0,
解得:a4=8或a4=-4(舍),
猜想:an=2n-1.
下面用數(shù)學(xué)歸納法來(lái)證明:
①當(dāng)n=1時(shí),命題顯然成立;
②假設(shè)當(dāng)n=k(k≥2)時(shí),有ak=2k-1,
∴ak+1=$\frac{2{{a}_{k}}^{2}}{{a}_{k+1}-{a}_{k}}$=$\frac{{2}^{2k-1}}{{a}_{k+1}-{2}^{k-1}}$,
整理得:${{a}_{k+1}}^{2}$-2k-1ak+1-22k-1=0,
∴(ak+1-2k)(ak+1+2k-1)=0,
解得:ak+1=2k或ak+1=-2k-1(舍),
即當(dāng)n=k+1時(shí),命題也成立;
由①、②可知an=2n-1.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng),考查數(shù)學(xué)歸納法,注意解題方法的積累,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | {x|1<x<4} | B. | {x|1<x≤4} | C. | {x|1≤x≤4} | D. | {x|1≤x<4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 3 | B. | 4 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 30° | B. | 45° | C. | 30°或150° | D. | 120° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | M?N | B. | M?N | C. | M=N | D. | M,N無(wú)包含關(guān)系 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com