分析 根據(jù)函數(shù)是奇函數(shù)求出a,解不等式即可.
解答 解:∵f(x)=2x-$\frac{1}{2x}$+a是奇函數(shù),
∴f(-x)=-f(x),
即-2x+$\frac{1}{2x}$+a=-(2x-$\frac{1}{2x}$+a)=-2x+$\frac{1}{2x}$-a,
即a=-a,則a=0,
解f(x)=2x-$\frac{1}{2x}$,
由f(x)>3得2x-$\frac{1}{2x}$>3,
即2x-$\frac{1}{2x}$-3>0,
則$\frac{4{x}^{2}-6x-1}{2x}$>0,
若x>0,則4x2-6x-1>0,
即x>$\frac{3+\sqrt{13}}{4}$或x<$\frac{3-\sqrt{13}}{4}$(舍),
若x<0,則4x2-6x-1<0,
即$\frac{3-\sqrt{13}}{4}$<x<$\frac{3+\sqrt{13}}{4}$,
此時(shí)$\frac{3-\sqrt{13}}{4}$<x<0,
綜上不等式的解為$\frac{3-\sqrt{13}}{4}$<x<0或x>$\frac{3+\sqrt{13}}{4}$,
即不等式的解集為{x|$\frac{3-\sqrt{13}}{4}$<x<0或x>$\frac{3+\sqrt{13}}{4}$},
故答案為:{x|$\frac{3-\sqrt{13}}{4}$<x<0或x>$\frac{3+\sqrt{13}}{4}$}
點(diǎn)評(píng) 本題主要考查函數(shù)奇偶性的應(yīng)用,以及不等式的求解,考查學(xué)生的運(yùn)算能力.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com