欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

20.已知函數(shù)$f(x)=sin(x-\frac{3π}{2})cos(\frac{π}{2}-x)+cosxcos(π-x)$.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)當(dāng)$x∈[\frac{π}{4},\frac{3π}{4}]$,求f(x)的值域.

分析 (Ⅰ)利用誘導(dǎo)公式化簡解析式為一個角的一個三角函數(shù)名稱的形式,然后求周期;
(Ⅱ)由自變量范圍求復(fù)合角的范圍,利用正弦函數(shù)的單調(diào)性求值域.

解答 解:(Ⅰ)$f(x)=cosxsinx-{cos^2}x=\frac{1}{2}sin2x-\frac{1+cos2x}{2}=\frac{{\sqrt{2}}}{2}sin(2x-\frac{π}{4})-\frac{1}{2}$,
所以函數(shù)f(x)的最小正周期為π;…(6分)
(Ⅱ)$x∈[\frac{π}{4},\frac{3π}{4}]⇒2x-\frac{π}{4}∈[\frac{π}{4},\frac{5π}{4}]⇒sin(2x-\frac{π}{4})∈[-\frac{{\sqrt{2}}}{2},1]$,
∴$f(x)∈[-1,\frac{{\sqrt{2}-1}}{2}]$.…(13分)

點評 本題考查了三角函數(shù)倍角公式化簡三角函數(shù)式以及利用三角函數(shù)的單調(diào)性求值域;屬于經(jīng)常考查題型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.正四面體ABCD的棱長為2,棱AD與平面α所成的角θ∈[$\frac{π}{3}$,$\frac{π}{2}$],且頂點A在平面α內(nèi),B,C,D均在平面α外,則棱BC的中點E到平面α的距離的取值范圍是( 。
A.[$\frac{\sqrt{3}}{2}$,1]B.[$\frac{\sqrt{3}-\sqrt{2}}{2}$,1]C.[$\frac{\sqrt{3}-\sqrt{2}}{2}$,$\frac{\sqrt{3}+\sqrt{2}}{2}$]D.[$\frac{\sqrt{3}-\sqrt{2}}{2}$,$\sqrt{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知a,b∈R,a≠0,曲線y=$\frac{a+2}{x}$,y=ax+2b+1,若兩條曲線在區(qū)間[3,4]上至少有一個公共點,則a2+b2的最小值=$\frac{1}{100}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.函數(shù)f(x)=2ax2-2bx-a+b(a,b∈R,a>0),g(x)=2ax-2b
(1)若$θ∈[{0,\frac{π}{2}}]$時,求f(sinθ)的最大值;
(2)設(shè)a>0時,若對任意θ∈R,都有|f(sinθ)|≤1恒成立,且g(sinθ)的最大值為2,求f(x)的表達式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.有大小形狀完全相同的4個紅球,2個白球,放入如圖所示的九個格子中,每個格子至多放入1個小球,相鄰格子(即有公共邊的兩個正方形)中放入的小球不同色,則不同的方法共有( 。
A.32種B.40種C.48種D.56種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=x3+ax2+bx+1,(x∈R)在x=3取得極小值
(1)求函數(shù)f(x)的極小值是-5,求f(x);
(2)若a=-4時,函數(shù)f(x)存在極大值,求b的取值范圍及f(x)取得極大值時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.根據(jù)如圖所示的偽代碼,則輸出的S的值為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=2co{s}^{2}α}\\{y=sin2α}\end{array}\right.$(α是參數(shù)),以原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=$\frac{1}{sinθ-cosθ}$.
(1)求曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;
(2)求曲線C1上的任意一點P到曲線C2的最小距離,并求出此時點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知x,y滿足約束條件$\left\{\begin{array}{l}{x^2}+{y^2}≤4\\ x-2y-2≤0\\ 2x-y+2≥0\end{array}\right.$,則z=2x+y的最大值為( 。
A.2B.$\sqrt{5}$C.4D.$2\sqrt{5}$

查看答案和解析>>

同步練習(xí)冊答案