分析 ①連接OT,AT是切線,則OT⊥AP,可以證明AB∥OT,得到∠TBA=∠BTO,再根據等邊對等角得到∠OTB=∠OBT,就可以證出結論;
②過點B作BH⊥OT于點H,然后在Rt△OBH中,利用OB=5,BH=AT=4根據勾股定理求出OH,最后即可求出AB.
解答 解:①BT平分∠OBA,
證明:連接OT,
∵AT是切線,![]()
∴OT⊥AP;
又∵∠PAB是直角,即AQ⊥AP,
∴AB∥OT,
∴∠TBA=∠BTO.
又∵OT=OB,
∴∠OTB=∠OBT.
∴∠OBT=∠TBA,即BT平分∠OBA;
②過點B作BH⊥OT于點H,
則四邊形OMBH和四邊形ABHT都是矩形.
則在Rt△OBH中,OB=5,BH=AT=4,
∴OH=$\sqrt{O{B}^{2}-B{H}^{2}}$=$\sqrt{{5}^{2}-{4}^{2}}$=3,
∴AB=HT=OT-OH=5-3=2.
點評 此題考查了切線的性質,勾股定理,等腰三角形的性質,平行線的判定與性質,及垂徑定理,熟練掌握切線的性質是解本題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
| A. | $\frac{2}{3}$π | B. | $\frac{4}{9}$π | C. | 3π | D. | 4π |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
| A. | 4 | B. | 6 | C. | 8 | D. | 10 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com