分析 (1)欲證明AC∥DE,只要證明AC⊥OD,ED⊥OD即可.
(2)作DM⊥OA于M,連接CD,CO,AD,首先證明四邊形ACDE是平行四邊形,根據(jù)S平行四邊形ACDE=AE•DM,只要求出DM即可.
解答 (1)證明:∵ED與⊙O相切于D,
∴OD⊥DE,
∵F為弦AC中點,![]()
∴OD⊥AC,
∴AC∥DE.
(2)解:作DM⊥OA于M,連接CD,CO,AD.
首先證明四邊形ACDE是平行四邊形,根據(jù)S平行四邊形ACDE=AE•DM,只要求出DM即可.(方法二:證明△ADE的面積等于四邊形ACDE的面積的一半)
∵AC∥DE,AE=AO,
∴OF=DF,
∵AF⊥DO,
∴AD=AO,
∴AD=AO=OD,
∴△ADO是等邊三角形,同理△CDO也是等邊三角形,
∴∠CDO=∠DOA=60°,AE=CD=AD=AO=DO=a,
∴AO∥CD,又AE=CD,
∴四邊形ACDE是平行四邊形,易知DM=$\frac{\sqrt{3}}{2}$a,
∴平行四邊形ACDE面積=$\frac{\sqrt{3}}{2}$a2.
點評 本題考查切線的性質(zhì)、平行四邊形的性質(zhì)、垂徑定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,利用特殊三角形解決問題,屬于中考?碱}型.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com