| A. | 6 | B. | 3 | C. | 2 | D. | 1.5 |
分析 取線段AC的中點(diǎn)G,連接EG,根據(jù)等邊三角形的性質(zhì)以及角的計(jì)算即可得出CD=CG以及∠FCD=∠ECG,由旋轉(zhuǎn)的性質(zhì)可得出EC=FC,由此即可利用全等三角形的判定定理SAS證出△FCD≌△ECG,進(jìn)而即可得出DF=GE,再根據(jù)點(diǎn)G為AC的中點(diǎn),即可得出EG的最小值,此題得解.
解答 解:取線段AC的中點(diǎn)G,連接EG,如圖所示.![]()
∵△ABC為等邊三角形,且AD為△ABC的對(duì)稱軸,
∴CD=CG=$\frac{1}{2}$AB=3,∠ACD=60°,
∵∠ECF=60°,
∴∠FCD=∠ECG.
在△FCD和△ECG中,$\left\{\begin{array}{l}{FC=EC}\\{∠FCD=∠ECG}\\{DC=GC}\end{array}\right.$,
∴△FCD≌△ECG(SAS),
∴DF=GE.
當(dāng)EG∥BC時(shí),EG最小,
∵點(diǎn)G為AC的中點(diǎn),
∴此時(shí)EG=DF=$\frac{1}{2}$CD=$\frac{3}{2}$.
故選D.
點(diǎn)評(píng) 本題考查了等邊三角形的性質(zhì)以及全等三角形的判定與性質(zhì),解題的關(guān)鍵是通過(guò)全等三角形的性質(zhì)找出DF=GE.本題屬于中檔題,難度不大,解決該題型題目時(shí),根據(jù)全等三角形的性質(zhì)找出相等的邊是關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | x≥-1 | B. | x>-1 | C. | x>-1且x≠0 | D. | x≠0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com