| A. | 20° | B. | 35° | C. | 40° | D. | 55° |
分析 由圓內(nèi)接四邊形的性質(zhì)求出∠ADC=180°-∠ABC=125°,由圓周角定理求出∠ACB=90°,得出∠BAC=35°,由弦切角定理得出∠MCA=∠ABC=55°,由三角形的外角性質(zhì)得出∠DCM=∠ADC-∠AMC=35°,即可求出∠ACD的度數(shù).
解答 解:∵圓內(nèi)接四邊形ABCD的邊AB過(guò)圓心O,
∴∠ADC+∠ABC=180°,∠ACB=90°,
∴∠ADC=180°-∠ABC=125°,∠BAC=90°-∠ABC=35°,
∵過(guò)點(diǎn)C的切線與邊AD所在直線垂直于點(diǎn)M,
∴∠MCA=∠ABC=55°,∠AMC=90°,
∵∠ADC=∠AMC+∠DCM,
∴∠DCM=∠ADC-∠AMC=35°,
∴∠ACD=∠MCA-∠DCM=55°-35°=20°;
故選:A.
點(diǎn)評(píng) 本題考查了圓內(nèi)接四邊形的性質(zhì)、圓周角定理、三角形的外角性質(zhì)、弦切角定理等知識(shí);熟練掌握?qǐng)A內(nèi)接四邊形的性質(zhì)和圓周角定理是解決問(wèn)題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -π | B. | -3 | C. | -1 | D. | -$\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | k>1 | B. | k<1 | C. | k≥1 | D. | k≤1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com