| A. | 4π-2$\sqrt{2}$-2 | B. | 4π-2 | C. | 2π+2$\sqrt{2}$-2 | D. | 2π+2$\sqrt{2}$ |
分析 連接OC、EC,由△OCD≌△OCE、OC⊥DE可得DE=$\sqrt{{2}^{2}+{2}^{2}}$=2$\sqrt{2}$,分別求出S扇形OBC、S△OCD、S△ODE面積,根據(jù)S扇形OBC+S△OCD-S△ODE=S陰影部分可得.
解答
解:連結(jié)OC,過(guò)C點(diǎn)作CF⊥OA于F,
∵半徑OA=4,C為$\widehat{AB}$的中點(diǎn),D、E分別是OA、OB的中點(diǎn),
∴OD=OE=2,OC=4,∠AOC=45°,
∴CF=2$\sqrt{2}$,
∴空白圖形ACD的面積=扇形OAC的面積-三角形OCD的面積
=$\frac{45π×{4}^{2}}{360}$-$\frac{1}{2}$×2×2$\sqrt{2}$
=2π-2$\sqrt{2}$,
三角形ODE的面積=$\frac{1}{2}$OD×OE=2,
∴圖中陰影部分的面積=扇形OAB的面積-空白圖形ACD的面積-三角形ODE的面積
=$\frac{90π×{4}^{2}}{360}$-(2π-2$\sqrt{2}$)-2
=2π+2$\sqrt{2}$-2.
故選C.
點(diǎn)評(píng) 考查了扇形面積的計(jì)算,本題難點(diǎn)是得到空白圖形ACD的面積,關(guān)鍵是理解圖中陰影部分的面積=扇形OAB的面積-空白圖形ACD的面積-三角形ODE的面積.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -3.14 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com