欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

13.△ABC中∠A,∠B,∠C的對邊分別是a,b,c,下列命題中的假命題是( 。
A.如果∠C-∠B=∠A,則△ABC是直角三角形
B.如果c2=b2-a2,則△ABC是直角三角形,且∠C=90°
C.如果∠A:∠B:∠C=5:2:3,則△ABC是直角三角形
D.如果(c+a)(c-a)=b2,則△ABC是直角三角形

分析 直角三角形的判定方法有:①求得一個角為90°,②利用勾股定理的逆定理.

解答 解:A、根據(jù)三角形內(nèi)角和定理,可求出角C為90度,故正確;
B、解得應(yīng)為∠B=90度,故錯誤;
C、設(shè)三角分別為5x,3x,2x,根據(jù)三角形內(nèi)角和定理可求得三外角分別為:90度,36度,54度,則△ABC是直角三角形,故正確.
D、化簡后有c2=a2+b2,根據(jù)勾股定理,則△ABC是直角三角形,故正確;
故選B.

點評 考查了命題與定理的知識,解題的關(guān)鍵是了解直角三角形的判定方法,難度不大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.如圖,直線y=-$\frac{3}{4}$x+6分別與x軸、y軸交于A、B兩點,直線y=$\frac{5}{4}$x與AB交于點C,與過點A且平行于y軸的直線交于點D,點E從點A出發(fā),以每秒1個單位的速度沿x軸向左運動,過點E作x軸的垂線,分別交直線AB、OD于P、Q兩點,以PQ為邊向右作正方形PQMN.設(shè)正方形PQMN與△ACD重疊部分(陰影部分)的面積為S(平方單位),點E的運動時間為ts(t>0).
(1)求點C的坐標;
(2)當(dāng)0<t<5時,求S的最大值;
(3)當(dāng)t在何范圍時,點(4,$\frac{17}{4}$)被正方形PQMN覆蓋?請直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.如圖,直線y=2x+2與x軸交于點A,與y軸交于點B,把△AOB沿y軸翻折,點A落到點C,過點B的拋物線y=-x2+bx+c與直線BC交于點D(3,-4)
(1)求直線BD和拋物線對應(yīng)的函數(shù)解析式;
(2)在拋物線對稱軸上求一點P的坐標,使△ABP的周長最。
(3)在第一象限內(nèi)的拋物線上,是否存在一點M,作MN垂直于x軸,垂足為點N,使得以M,O,N為頂點的三角形與△BOC相似?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

1.在?ABCD中,∠A:∠B:∠C:∠D的值可以是( 。
A.1:2:2:1B.1:2:3:4C.2:1:1:2D.2:1:2:1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.計算:($\sqrt{5}$-2)2014($\sqrt{5}$+2)2015-2|-$\frac{\sqrt{5}}{2}$|-(1-$\sqrt{2}$)0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.已知正方形ABCD中,E為對角線BD上一點,過E點作EF⊥BD交BC于F,連接DF,G為DF中點,連接EG,CG.
(1)求證:EG=CG且EG⊥CG;
(2)將圖①中△BEF繞B點逆時針旋轉(zhuǎn)45°,如圖②所示,取DF中點G,連接EG,CG.問(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由.
(3)將圖①中△BEF繞B點旋轉(zhuǎn)任意角度,如圖③所示,再連接相應(yīng)的線段,問(1)中的結(jié)論是否仍然成立?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,直線AB,CD相交于點O,因為∠1+∠3=180°,∠2+∠3=180°,所以∠1=∠2,其推理依據(jù)是( 。
A.同角的余角相等B.對頂角相等C.同角的補角相等D.等角的補角相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

2.計算:180°-23°13′6″=156°46′54″;62.4°=62°24′.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

3.如圖,正方形ABCD中,AB=6,點E在邊AB上,且BE=2AE.將△ADE沿ED對折至△FDE,延長EF交邊BC于點G,連結(jié)DG,BF.下列結(jié)論:①△DCG≌△DFG;②BG=GC;③DG∥BF;④S△BFG=3.其中正確的結(jié)論是①②③(填寫序號)

查看答案和解析>>

同步練習(xí)冊答案