分析 根據(jù)題意結(jié)合平行線的性質(zhì)得出$\frac{BD}{DC}$=$\frac{BF}{AF}$的值,進而利用銳角三角函數(shù)關(guān)系得出tan∠ACE=tan∠DAF=$\frac{AE}{EC}=\frac{DF}{AF}$的值,問題得解.
解答
解:過點D作DF⊥AB于點F,
∵∠CAB=90°,DF⊥AB,
∴AC∥DF,
∴$\frac{BD}{DC}$=$\frac{BF}{AF}$=
∵BC=3BD,
∴$\frac{BD}{DC}$=$\frac{BF}{AF}$=$\frac{1}{2}$,
∴AF=k•BF
∵tanB=$\frac{1}{2}$,
∴$\frac{DF}{FB}$=$\frac{1}{2}$,
∴DF=$\frac{1}{2}$FB,
∴$\frac{DF}{AF}=\frac{\frac{1}{2}BF}{AF}=\frac{1}{4}$,
∵CE⊥AD,
∴tan∠ACE=$\frac{AE}{EC}$,
∵∠CAE+∠ACE=90°,∠CAE+∠DAB=90°,
∴∠ACE=∠DAF,
∴tan∠ACE=tan∠DAF=$\frac{AE}{EC}=\frac{DF}{AF}$=$\frac{1}{4}$.
故答案為:$\frac{1}{4}$.
點評 此題主要考查了相似三角形的性質(zhì)以及平行線分線段成比例定理、銳角三角函數(shù)關(guān)系等知識,正確得出tan∠ACE=tan∠DAF的值是解題關(guān)鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com