分析 (1)由在⊙O中,直徑AB交弦CD于點G,CG=DG,根據(jù)垂徑定理即可得AB⊥CD,又由BE是⊙O的切線,易證得CD∥BE,即可證得結論;
(2)易證得△ODG∽△OEB,然后由相似三角形的對應邊成比例,求得OG的長,由勾股定理即可求得DG的長,繼而求得答案.
解答 (1)證明:∵在⊙O中,直徑AB交弦CD于點G,CG=DG,
∴AB⊥CD,
∵BE是⊙O的切線,
∴AB⊥BE,
∴CD∥BE,
∴∠CDE=∠E;
(2)解:∵∠CDE=∠E,∠DOG=∠BOE,
∴△ODG∽△OEB,
∴$\frac{OG}{OB}=\frac{OD}{OE}$,
∵OD=4,EF=1,
∴OB=OF=OD=4,
∴OE=OF+EF=5,
∴$\frac{OG}{4}=\frac{4}{5}$,
∴OG=$\frac{16}{5}$,
∴DG=$\sqrt{O{D}^{2}-O{G}^{2}}$=$\frac{12}{5}$,
∴CD=2DG=$\frac{24}{5}$.
點評 此題考查了切線的性質(zhì)、垂徑定理以及相似三角形的判定與性質(zhì).注意證得△ODG∽△OEB是解此題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | $\frac{1}{2}$π | B. | $\frac{\sqrt{3}}{2}$π | C. | π | D. | 無法確定 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com