分析 首先利用HL證明Rt△AEB≌Rt△CEB,得到AE=CE,再證明△AED≌△CED,即可得到∠1=∠2.
解答 解:∵AC⊥BD,
∴∠AEB=∠CEB=90°,
在Rt△AEB和Rt△CEB,
$\left\{\begin{array}{l}{AB=CB}\\{BE=BE}\end{array}\right.$,
∴Rt△AEB≌Rt△CEB,
∴AE=CE,
在△AED和△CED中,
$\left\{\begin{array}{l}{AE=CE}\\{∠AED=∠CED=90°}\\{DE=DE}\end{array}\right.$,
∴△AED≌△CED,
∴∠1=∠2.
點評 本題考查了全等三角形的性質(zhì)定理與判定定理,解決本題的關(guān)鍵是證明Rt△AEB≌Rt△CEB,△AED≌△CED.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com