分析 連接OC,如圖所示,由直徑AB垂直于CD,利用垂徑定理得到E為CD的中點,即CE=DE,由OA=OC,利用等邊對等角得到一對角相等,確定出三角形COE為等腰直角三角形,求出OC的長,即為圓的半徑.
解答
解:連接OC,如圖所示:
∵AB是⊙O的直徑,弦CD⊥AB,
∴CE=DE=$\frac{1}{2}$CD=2cm,
∵OA=OC,
∴∠A=∠OCA=22.5°,
∵∠COE為△AOC的外角,
∴∠COE=45°,
∴△COE為等腰直角三角形,
∴OC=$\sqrt{2}$CE=2$\sqrt{2}$cm,
故答案為:2$\sqrt{2}$.
點評 此題考查了垂徑定理,等腰直角三角形的性質(zhì),以及圓周角定理,熟練掌握垂徑定理是解本題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 5 | B. | 6 | C. | 8 | D. | 10 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 6 | B. | 4 | C. | 8 | D. | 5 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 4$\sqrt{3}$m | B. | 6$\sqrt{5}$m | C. | 12$\sqrt{5}$m | D. | 24m |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com