分析 根據已知得出MN是線段AD的垂直平分線,推出AE=DE,AF=DF,求出DE∥AC,DF∥AE,得出四邊形AEDF是菱形,根據菱形的性質得出AE=DE=DF=AF,根據平行線分線段成比例定理得出$\frac{BD}{CD}$=$\frac{BE}{AE}$,代入求出即可.
解答 解:∵根據作法可知:MN是線段AD的垂直平分線,
∴AE=DE,AF=DF,![]()
∴∠EAD=∠EDA,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴∠EDA=∠CAD,
∴DE∥AC,
同理DF∥AE,
∴四邊形AEDF是菱形,
∴AE=DE=DF=AF,
∵AE=4,
∴AE=DE=DF=AF=4,
∵DE∥AC,
∴$\frac{BD}{CD}$=$\frac{BE}{AE}$,
∵BD=6,AF=4,CD=3,
∴$\frac{6}{3}$=$\frac{BE}{4}$,
∴BE=8,
故答案為:8.
點評 本題考查了平行線分線段成比例定理,菱形的性質和判定,線段垂直平分線性質,等腰三角形的性質的應用,能根據定理四邊形AEDF是菱形是解此題的關鍵,注意:一組平行線截兩條直線,所截得的對應線段成比例.
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com