分析 由平行四邊形的性質(zhì)和已知條件得出OD=2,CD+BC=6,再證明OE是△BCD的中位線,得出DE+OE=3,即可得出結(jié)果.
解答 解:∵四邊形ABCD是平行四邊形,
∴AB=CD,AD=BC,OB=OD=$\frac{1}{2}$BD=2,
∵?ABCD的周長(zhǎng)為12,
∴CD+BC=6,
∵點(diǎn)E是CD的中點(diǎn),
∴DE=$\frac{1}{2}$CD,OE是△BCD的中位線,
∴OE=$\frac{1}{2}$BC,
∴DE+OE=$\frac{1}{2}$(CD+BC)=3,
∴△DOE的周長(zhǎng)=OD+DE+OE=2+3=5;
故答案為:5.
點(diǎn)評(píng) 本題考查了平行四邊形的性質(zhì)、三角形中位線定理;熟練掌握平行四邊形的性質(zhì),運(yùn)用三角形中位線定理是解決問(wèn)題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 3$\sqrt{2}$-2$\sqrt{3}$=1 | B. | $\root{3}{-27}$=-3 | C. | |$\sqrt{2}$-$\sqrt{3}$|+$\sqrt{2}$=2$\sqrt{2}$-$\sqrt{3}$ | D. | ($\sqrt{3}$+$\frac{1}{\sqrt{3}}$)÷$\sqrt{3}$=4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 6 | B. | 12 | C. | 18 | D. | 24 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com