分析 (1)只要證明∠DOC=∠DOE,利用等腰三角形的三線合一即可證明;
(2)欲證明PC是⊙O的切線,只要證明∠OCP=90°即可;
(3)設(shè)⊙O的半徑為r,OD=x,則BD=2x,r=3x,易證得Rt△OCD∽R(shí)t△OPC,根據(jù)相似三角形的性質(zhì)得OC2=OD•OP,即(3x)2=x•(3x+9),解出x,即可得圓的半徑;同理可得PC2=PD•PO=(PB+BD)•(PB+OB)=162,可計(jì)算出PC,然后在Rt△OCP中,根據(jù)正切的定義即可得到tan∠P的值.
解答 (1)證明:連接OC,![]()
∴∠COB=2∠CAB,
又∠POE=2∠CAB.
∴∠COD=∠EOD,
又∵OC=OE,
∴∠ODC=∠ODE=90°,
即CE⊥AB;
(2)證明:∵CE⊥AB,∠P=∠E,
∴∠P+∠PCD=∠E+∠PCD=90°,
又∠OCD=∠E,
∴∠OCD+∠PCD=∠PCO=90°,
∴PC是⊙O的切線;
(3)解:設(shè)⊙O的半徑為r,OD=x,則BD=2x,r=3x,
∵CD⊥OP,OC⊥PC,
∴Rt△OCD∽R(shí)t△OPC,
∴OC2=OD•OP,即(3x)2=x•(3x+9),
解之得x=$\frac{3}{2}$,
∴⊙O的半徑r=$\frac{9}{2}$,
同理可得PC2=PD•PO=(PB+BD)•(PB+OB)=162,
∴PC=9 $\sqrt{2}$,
在Rt△OCP中,tan∠P=$\frac{OC}{PC}$=$\frac{\sqrt{2}}{4}$.
點(diǎn)評(píng) 本題考查切線的判定和性質(zhì)、垂徑定理、勾股定理、銳角三角函數(shù)、相似三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)條件出發(fā)與直線,靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,學(xué)會(huì)構(gòu)建方程解決問(wèn)題,屬于中考常考題型.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=1}\\{y=-3}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=-1}\\{y=3}\end{array}\right.$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com