| A. | 8$\sqrt{3}$cm | B. | 16$\sqrt{3}$cm | C. | 8cm | D. | 16cm |
分析 連接OA、OC.設(shè)⊙O的半徑是R,則OG=R-2,OE=R-4.根據(jù)垂徑定理,得CG=10.在直角三角形OCG中,根據(jù)勾股定理求得R的值,再進(jìn)一步在直角三角形OAE中,根據(jù)勾股定理求得AE的長,從而再根據(jù)垂徑定理即可求得AB的長.
解答
解:如圖所示,連接OA、OC.
設(shè)⊙O的半徑是R,則OG=R-2,OE=R-4.
∵OF⊥CD,
∴CG=$\frac{1}{2}$CD=10cm.
在直角三角形COG中,根據(jù)勾股定理,得
R2=102+(R-2)2,
解,得R=26.
在直角三角形AOE中,根據(jù)勾股定理,得
AE=$\sqrt{2{6}^{2}-2{2}^{2}}$=8$\sqrt{3}$cm.
根據(jù)垂徑定理,得AB=16$\sqrt{3}$(cm),
故選B.
點評 本題考查了勾股定理,垂徑定理的應(yīng)用,能構(gòu)造直角三角形是解此題的關(guān)鍵,注意:垂直于弦的直徑平分弦.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{3}$ | B. | -$\frac{1}{3}$ | C. | 0 | D. | 1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 129名 | B. | 120名 | C. | 108名 | D. | 96名 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | -$\frac{8}{5}$ | B. | $\frac{8}{5}$ | C. | -$\frac{4}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com