| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
分析 找出二次函數(shù)與x軸的交點(diǎn),結(jié)合點(diǎn)P所在的象限分段考慮,再根據(jù)二次函數(shù)的性質(zhì)找出其最值以及在各段區(qū)間內(nèi)的增減性,對(duì)比4個(gè)結(jié)論即可得知正確的結(jié)論有兩個(gè).
解答 解:令二次函數(shù)y=x2-2x-3中y=0,即x2-2x-3=0,
解得:x1=-1,x2=3.
(i)當(dāng)x≤-1時(shí),d1=x2-2x-3,d2=-x,
d=d1+d2=x2-3x-3=$(x-\frac{3}{2})^{2}-\frac{21}{4}$,
d≥1;
(ii)當(dāng)-1<x≤0時(shí),d1=-x2+2x+3,d2=-x,
d=-x2+x+3=-$(x-\frac{1}{2})^{2}+\frac{13}{4}$,
1<d≤3;
(iii)當(dāng)0<x≤3時(shí),d1=-x2+2x+3,d2=x,
d=-x2+3x+3=-$(x-\frac{3}{2})^{2}$+$\frac{21}{4}$,
3≤d≤$\frac{21}{4}$;
(iv)當(dāng)3<x時(shí),d1=x2-2x-3,d2=x,
d=d1+d2=x2-x-3=$(x-\frac{1}{2})^{2}-\frac{13}{4}$,
3<d.
綜上可知:d有最小值,沒有最大值,即①成立,②不成立;
當(dāng)0<x≤$\frac{3}{2}$時(shí),d隨x的增大而增大,$\frac{3}{2}$<x≤3時(shí),d隨x的增大而減小,
∴-1<x<3時(shí),d隨x的增大而增大,結(jié)論③不成立;
令d=5,(i)中存在一個(gè)解;(ii)中無解;(iii)中有兩個(gè)解;(iv)中一個(gè)解.
∴滿足d=5的點(diǎn)P有四個(gè),結(jié)論④成立.
∴正確的結(jié)論有2個(gè).
故選B.
點(diǎn)評(píng) 本題考查了二次函數(shù)的性質(zhì),解題的關(guān)鍵是根據(jù)點(diǎn)P所在的區(qū)間進(jìn)行分段.本題屬于基礎(chǔ)題,難度不大,解決該題型題目時(shí),根據(jù)二次函數(shù)的性質(zhì)找出函數(shù)在各段區(qū)間內(nèi)的增減性與最值是關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 86° | B. | 76° | C. | 66° | D. | 52° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 15° | B. | 20° | C. | 25° | D. | 30° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com