10.?dāng)?shù)學(xué)問題:計(jì)算$\frac{1}{m}+\frac{1}{{m}^{2}}+\frac{1}{{m}^{3}}+…+\frac{1}{{m}^{n}}$*(其中m,n都是正整數(shù),且m≥2,n≥1)
探究問題:為解決上面的數(shù)字問題,我們運(yùn)用數(shù)形結(jié)合的思想方法,通過不斷地分割一個(gè)面積為1的正方形,把數(shù)量關(guān)系和幾何圖形巧妙地結(jié)合起來,并采取一般問題特殊化的策略來進(jìn)行探究.
探究一:計(jì)算$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}}$
第1次分割,把正方形的面積二等分,其中陰影部分的面積為$\frac{1}{2}$;
第2次分割,把上次分割圖中空白部分的面積繼續(xù)二等分,陰影部分的面積之和為$\frac{1}{2}+\frac{1}{{2}^{2}}$;
第3次分割,把上次分割圖中空白部分的面積繼續(xù)二等分,…;
…
第n次分割,把上次分割圖中空白部分的面積最后二等分,所有陰影部分的面積之和為$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}}$,最后空白部分的面積是$\frac{1}{{2}^{n}}$.
根據(jù)第n次分割圖可得等式:$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}}$=1-$\frac{1}{{2}^{n}}$.

探究二:計(jì)算$\frac{1}{3}$+$\frac{1}{{3}^{2}}+\frac{1}{{3}^{3}}+…+\frac{1}{{3}^{n}}$.
第1次分割,把正方形的面積三等分,其中陰影部分的面積為$\frac{2}{3}$;
第2次分割,把上次分割圖中空白部分的面積繼續(xù)三等分,陰影部分的面積之和為$\frac{2}{3}+\frac{2}{{3}^{2}}$;
第3次分割,把上次分割圖中空白部分的面積繼續(xù)三等分,…;
…
第n次分割,把上次分割圖中空白部分的面積最后三等分,所有陰影部分的面積之和為$\frac{2}{3}$+$\frac{2}{{3}^{2}}+\frac{2}{{3}^{3}}+…+\frac{2}{{3}^{n}}$,最后空白部分的面積是$\frac{1}{{3}^{n}}$.
根據(jù)第n次分割圖可得等式:$\frac{2}{3}$+$\frac{2}{{3}^{2}}+\frac{2}{{3}^{3}}+…+\frac{2}{{3}^{n}}$=1-$\frac{1}{{3}^{n}}$.
兩邊同除以2,得$\frac{1}{3}$+$\frac{1}{{3}^{2}}+\frac{1}{{3}^{3}}+…+\frac{1}{{3}^{n}}$=$\frac{1}{2}$$-\frac{1}{2×{3}^{n}}$\

探究三:計(jì)算$\frac{1}{4}+\frac{1}{{4}^{2}}+\frac{1}{{4}^{3}}+..+\frac{1}{{4}^{n}}$.
(仿照上述方法,只畫出第n次分割圖,在圖上標(biāo)注陰影部分面積,并寫出探究過程)

解決問題:根據(jù)前面探究結(jié)果:
$\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}}$=1-$\frac{1}{{2}^{n}}$
$\frac{1}{3}$+$\frac{1}{{3}^{2}}+\frac{1}{{3}^{3}}+…+\frac{1}{{3}^{n}}$=$\frac{1}{2}$$-\frac{1}{2×{3}^{n}}$
$\frac{1}{4}+\frac{1}{{4}^{2}}+\frac{1}{{4}^{3}}+..+\frac{1}{{4}^{n}}$=$\frac{1}{3}$-$\frac{1}{3×{4}^{n}}$.
…
推出:$\frac{1}{m}+\frac{1}{{m}^{2}}+\frac{1}{{m}^{3}}+…+\frac{1}{{m}^{n}}$=$\frac{1}{m-1}$-$\frac{1}{(m-1){m}^{n}}$.(只填空,其中m、n都是正整數(shù),且m≥2,n≥1)
拓廣應(yīng)用:計(jì)算$\frac{5-1}{5}+\frac{{5}^{2}-1}{{5}^{2}}+\frac{{5}^{3}-1}{{5}^{3}}+…+\frac{{5}^{n}-1}{{5}^{n}}$.