分析 (1)如圖1中,連接BD,根據(jù)三角形中位線定理只要證明EH∥FG,EH=FG即可.
(2)四邊形EFGH是菱形.先證明△APC≌△BPD,得到AC=BD,再證明EF=FG即可.
(3)四邊形EFGH是正方形,只要證明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可證明∠COD=∠CPD=90°,再根據(jù)平行線的性質(zhì)即可證明.
解答 (1)證明:如圖1中,連接BD.
∵點E,H分別為邊AB,DA的中點,
∴EH∥BD,EH=$\frac{1}{2}$BD,
∵點F,G分別為邊BC,CD的中點,
∴FG∥BD,F(xiàn)G=$\frac{1}{2}$BD,
∴EH∥FG,EH=GF,
∴中點四邊形EFGH是平行四邊形.
(2)四邊形EFGH是菱形.
證明:如圖2中,連接AC,BD.
∵∠APB=∠CPD,
∴∠APB+∠APD=∠CPD+∠APD
即∠APC=∠BPD,
在△APC和△BPD中,
$\left\{\begin{array}{l}{AP=PB}\\{∠APC=∠BPD}\\{PC=PD}\end{array}\right.$,
∴△APC≌△BPD,
∴AC=BD
∵點E,F(xiàn),G分別為邊AB,BC,CD的中點,
∴EF=$\frac{1}{2}$AC,F(xiàn)G=$\frac{1}{2}$BD,
∵四邊形EFGH是平行四邊形,
∴四邊形EFGH是菱形.
(3)四邊形EFGH是正方形.
證明:如圖2中,設AC與BD交于點O.AC與PD交于點M,AC與EH交于點N.
∵△APC≌△BPD,
∴∠ACP=∠BDP,
∵∠DMO=∠CMP,
∴∠COD=∠CPD=90°,
∵EH∥BD,AC∥HG,
∴∠EHG=∠ENO=∠BOC=∠DOC=90°,
∵四邊形EFGH是菱形,
∴四邊形EFGH是正方形.
點評 本題考查平行四邊形的判定和性質(zhì)、全等三角形的判定和性質(zhì)、菱形的判定和性質(zhì)、正方形的判定和性質(zhì)等知識,解題的關鍵是靈活應用三角形中位線定理,學會添加常用輔助線,屬于中考常考題型.
科目:初中數(shù)學 來源: 題型:選擇題
| A. | m>0 | B. | m<0 | C. | m>-$\frac{5}{2}$ | D. | m<-$\frac{5}{2}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 0個 | B. | 1個 | C. | 2個 | D. | 3個 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 13 | B. | 17 | C. | 20 | D. | 26 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 眾數(shù) | B. | 方差 | C. | 平均數(shù) | D. | 中位數(shù) |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | -1 | B. | 1 | C. | $\frac{x+y}{y-x}$ | D. | $\frac{x+y}{x-y}$ |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com