分析 (1)根據(jù)等腰三角形的性質(zhì)就可以求出∠BAE=∠CAE,再證明△ABE≌△ACE就可以得出結(jié)論;
(2)由BF⊥AC,∠BAC=45°就可以求出AF=BF,在由條件證明△AEF≌△BCF就可以得出結(jié)論.
解答 證明:(1)∵AB=AC,D是BC的中點,
∴∠EAB=∠EAC,
在△ABE和△ACE中,
$\left\{\begin{array}{l}{AB=AC}\\{∠EAB=∠EAC}\\{AE=AE}\end{array}\right.$,
∴△ABE≌△ACE(SAS),
∴BE=CE;
(2)當(dāng)∠BAC=45°時,EF=CF.
∵BF⊥AF,
∴∠AFB=∠CFB=90°.
∵∠BAC=45°,
∴∠ABF=45°,
∴∠ABF=∠BAC,
∴AF=BF.
∵AB=AC,點D是BC的中點,
∴AD⊥BC,
∴∠EAF+∠C=90°,
∵BF⊥AC,
∴∠CBF+∠C=90°,
∴∠EAF=∠CBF,
在△AEF和△BCF中,
$\left\{\begin{array}{l}{∠EAF=∠CBF}\\{AF=BF}\\{∠AFE=∠BFC=90°}\end{array}\right.$,
∴△AEF≌△BCF(ASA)
∴EF=CF.
故答案為:CF.
點評 本題考查了中點的性質(zhì)的運用,全等三角形的判定性質(zhì)的運用,等腰三角形的判定及性質(zhì)的運用,解答時證明三角形全等是關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 相離 | B. | 相切 | C. | 相交 | D. | 相交或相切 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com