分析 (1)結論:AE2+BF2=EF2.如圖1中,延長FD到M,使得DM=DF,連接AM,EM.首先證明△ADM≌△BDF,得到AM=FB,再證明△AEM是直角三角形,理由勾股定理即可解決問題.
(2)結論不變,證明方法類似.
解答 (1)結論:AE2+BF2=EF2.
理由:如圖1中,延長FD到M,使得DM=DF,連接AM,EM.![]()
在△ADM和△BDF中,
$\left\{\begin{array}{l}{AD=DB}\\{∠ADM=∠BDF}\\{DM=DF}\end{array}\right.$,
∴△ADM≌△BDF,
∴AM=BF,∠B=∠MAD,
∵∠C=90°,
∴∠B+∠CAB=90°,
∴∠CAB+∠MAD=90°,即∠EAM=90°,
∵∠EDF=90°,
∴ED⊥FM,∵DM=DF,
∴EM=EF,
在Rt△AEM中,∵AE2+AM2=EM2,
∴AE2+BF2=EF2.
(2)如圖2中,結論不變.AE2+BF2=EF2![]()
理由:延長FD到M,使得DM=DF,連接AM,EM.
在△ADM和△BDF中,
$\left\{\begin{array}{l}{AD=DB}\\{∠ADM=∠BDF}\\{DM=DF}\end{array}\right.$,
∴△ADM≌△BDF,
∴AM=BF,∠B=∠MAD,
∵∠C=90°,
∴∠B+∠CAB=90°,
∴∠CAB+∠MAD=90°,即∠EAM=∠CAM=90°,
∵∠EDF=90°,
∴ED⊥FM,∵DM=DF,
∴EM=EF,
在Rt△AEM中,∵AE2+AM2=EM2,
∴AE2+BF2=EF2.
點評 本題考查全等三角形的判定和性質(zhì)、直角三角形、線段垂直平分線的性質(zhì)、勾股定理等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題,屬于中考?碱}型.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
| 距離地面高度(千米)h | 0 | 1 | 2 | 3 | 4 | 5 |
| 溫度(℃)t | 20 | 14 | 8 | 2 | -4 | -10 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com