| A. | 6 | B. | $4\sqrt{3}$ | C. | $3\sqrt{3}$ | D. | 3 |
分析 根據(jù)直角三角形的性質(zhì),可得AB的長,根據(jù)旋轉(zhuǎn)的性質(zhì),可得A′B′的長,B′C的長,∠A′、∠A′B′C′,根據(jù)鄰補角的定義,可得∠AB′C的度數(shù),根據(jù)等腰三角形的判定,可得AB′,根據(jù)線段的和差,可得答案.
解答 解:由在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,得
AB=4,∠BAC=30°.
由旋轉(zhuǎn)的性質(zhì),得
A′B′=AB=4,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,AC=A′C.
由等腰三角形的性質(zhì),得
∠CAB′=∠A′=30°.
由鄰補角的定義,得
∠AB′C=180°-∠A′B′C=120°.
由三角形的內(nèi)角和定理,得
∠ACB′=180°-∠AB′C-∠B′AC=30°.
∴∠B′AC=∠B′CA=30°,
AB′=B′C=BC=2.
A′A=A′B′+AB′=4+2=6,
故選:A.
點評 本題考查了旋轉(zhuǎn)的性質(zhì),利用了旋轉(zhuǎn)的性質(zhì),直角三角形的性質(zhì),等腰三角形的性質(zhì),利用等腰三角形的判定得出AB′=B′′C是解題關(guān)鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 3.59×106 | B. | 3.60×106 | C. | 3.59×104 | D. | 3.60×104 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | $\frac{1}{5}$ | B. | $\frac{3}{16}$ | C. | 1-$\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{2}-1}{2}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{2\sqrt{5}}{5}$ | D. | $\frac{\sqrt{5}}{5}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | $\frac{4}{25}$ | B. | $\frac{2}{3}$ | C. | $\frac{2}{5}$ | D. | $\frac{4}{9}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com