分析 (1)根據(jù)等弧所對(duì)的圓周角相等,得出∠B=∠ACB,再根據(jù)全等三角形的判定得△ABD≌△CAE,即可得出AD=CE;
(2)連接AO并延長(zhǎng),交邊BC于點(diǎn)H,由等腰三角形的性質(zhì)和外心的性質(zhì)得出AH⊥BC,再由垂徑定理得BH=CH,得出CG與AE平行且相等.
解答
證明:(1)在⊙O中,
∵$\widehat{AB}$=$\widehat{AC}$,
∴AB=AC,
∴∠B=∠ACB,
∵AE∥BC,
∴∠EAC=∠ACB,
∴∠B=∠EAC,
在△ABD和△CAE中,$\left\{\begin{array}{l}{AB=CA}\\{∠B=∠EAC}\\{BD=AE}\end{array}\right.$,
∴△ABD≌△CAE(SAS),
∴AD=CE;
(2)連接AO并延長(zhǎng),交邊BC于點(diǎn)H,
∵$\widehat{AB}$=$\widehat{AC}$,OA為半徑,
∴AH⊥BC,
∴BH=CH,
∵AD=AG,
∴DH=HG,
∴BH-DH=CH-GH,即BD=CG,
∵BD=AE,
∴CG=AE,
∵CG∥AE,
∴四邊形AGCE是平行四邊形.
點(diǎn)評(píng) 本題考查了三角形的外接圓與外心以及全等三角形的判定和性質(zhì),平行四邊形的判定,圓心角、弧、弦之間的關(guān)系,把這幾個(gè)知識(shí)點(diǎn)綜合運(yùn)用是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1<r<4 | B. | 2<r<4 | C. | 1<r<8 | D. | 2<r<8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 250米 | B. | 250$\sqrt{3}$米 | C. | $\frac{500}{3}$$\sqrt{3}$米 | D. | 500$\sqrt{2}$米 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
| 旅游人數(shù) | 收費(fèi)標(biāo)準(zhǔn) |
| 不超過(guò)30人 | 人均收費(fèi)80元 |
| 超過(guò)30人 | 每增加1人,人均收費(fèi)降低1元,但人均收費(fèi)不低于50元 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com