| A. | ∠1=∠2 | B. | ∠A+∠ABC=180° | C. | ∠A=∠5 | D. | ∠3=∠4 |
分析 根據(jù)平行線的判定定理:同位角相等,兩直線平行;內(nèi)錯(cuò)角相等,兩直線平行;同旁內(nèi)角互補(bǔ),兩直線平行分別進(jìn)行分析即可.
解答 解:A、∠1=∠2可利用內(nèi)錯(cuò)角相等,兩直線平行判定AD∥BC,故此選項(xiàng)錯(cuò)誤;
B、∠A+∠ABC=180°可利用同旁內(nèi)角互補(bǔ),兩直線平行判定AD∥BC,故此選項(xiàng)錯(cuò)誤;
C、∠A=∠5可利用同位角相等,兩直線平行判定AD∥BC,故此選項(xiàng)錯(cuò)誤;
D、∠3=∠4,可根據(jù)內(nèi)錯(cuò)角相等,兩直線平行判定CD∥BA,不能判定AD∥BC,故此選項(xiàng)正確;
故選:D.
點(diǎn)評(píng) 此題主要考查了平行線的判定,關(guān)鍵是掌握平行線的判定定理.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 4 | B. | 3 | C. | 2+$\sqrt{2}$ | D. | $\sqrt{2}+1$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{3\sqrt{13}}{2}$ | B. | $\frac{\sqrt{119}}{2}$ | C. | $\frac{\sqrt{110}}{2}$ | D. | 6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com