分析 設(shè)CE=x,那么我們可將DE,EC轉(zhuǎn)化到一個(gè)三角形中進(jìn)行計(jì)算,根據(jù)折疊的性質(zhì)我們可得出AD=AF,DE=EF,那么DE,CE就都轉(zhuǎn)化到直角三角形EFC中了,下面的關(guān)鍵就是求出FC的長(zhǎng),也就必須求出BF的長(zhǎng),在直角三角形ABF中,已知了AB的長(zhǎng),AF=AD=10,因此可求出BF的長(zhǎng),也就有了CF的長(zhǎng),在直角三角形EFC中,由勾股定理得出方程,解方程即可.
解答 解:
依題意可得:BC=AD=AF=10,DE=EF.
在△ABF中,∠ABF=90°.
∴BF=$\sqrt{A{F}^{2}-A{B}^{2}}$=$\sqrt{1{0}^{2}-{6}^{2}}$=8,∴FC=10-8=2,
設(shè)CE=x,則EF=DE=6-x.
∵∠C=90°,
∴EC2+FC2=EF2,
∴x2+22=(6-x)2,
解之得:x=$\frac{8}{3}$,
∴CE=$\frac{8}{3}$.
故答案為:$\frac{8}{3}$.
點(diǎn)評(píng) 本題考查翻折變換的知識(shí),有一定難度,關(guān)鍵是通過折疊的性質(zhì),將所求和已知的線段轉(zhuǎn)換到同一個(gè)三角形中是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | a-(-a)=0 | B. | a+(-a)=0 | C. | a•(-a)=a2 | D. | a÷(-$\frac{1}{a}$)=-1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{9}$=±3 | B. | 2a+3b=5ab | C. | (-3ab2)2=9a2b4 | D. | (a-b)2=a2-b2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{3}π$-$\frac{\sqrt{3}}{4}$cm2 | B. | $\frac{\sqrt{3}}{8}$cm2 | C. | $\frac{\sqrt{3}}{2}$cm2 | D. | $\sqrt{3}$cm2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{\frac{1}{2}}$ | B. | $\sqrt{4}$ | C. | $\sqrt{6}$ | D. | $\sqrt{8}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 60° | B. | 70° | C. | 100° | D. | 110° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com