| A. | 任意等腰三角形 | B. | 任意直角三角形 | C. | 任意三角形 | D. | 等腰直角三角形 |
分析 由于(a-b)2+(a2+b2-c2)2=0,利用非負(fù)數(shù)的性質(zhì)可得a=b,且a2+b2=c2,根據(jù)等腰三角形的定義以及勾股定理的逆定理可得以a,b,c為邊的三角形是等腰直角三角形.
解答 解:∵(a-b)2+(a2+b2-c2)2=0,
∴a-b=0,且a2+b2-c2=0,
∴a=b,且a2+b2=c2,
∴以a,b,c為邊的三角形是等腰直角三角形.
故選D
點(diǎn)評(píng) 本題考查了勾股定理的逆定理:如果三角形的三邊長(zhǎng)a,b,c滿足a2+b2=c2,那么這個(gè)三角形就是直角三角形.也考查了等腰三角形的定義以及非負(fù)數(shù)的性質(zhì).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 7 | B. | 6.5 | C. | 6 | D. | 5.5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2a2-2=2(a+1)(a-1) | B. | (a+3)(a-3)=a2-9 | ||
| C. | -ab2+2ab-3b=-b(ab-2a-3) | D. | x2-2x-3=x(x-2)-3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 36x=5(4$\frac{1}{5}$+36) | B. | $\frac{36}{60}$x=5×4$\frac{1}{5}$+$\frac{36}{60}$ | ||
| C. | $\frac{36}{60}$x=5(4$\frac{1}{5}$+$\frac{36}{60}$) | D. | $\frac{36}{60}$x=4$\frac{1}{5}$+5×$\frac{36}{60}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 大的2個(gè),小的15個(gè) | |
| B. | 大的7個(gè),小的3個(gè) | |
| C. | 大的2個(gè),小的15個(gè)或 大的7個(gè),小的3個(gè) | |
| D. | 無(wú)數(shù)種 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | 3$\sqrt{3}$ | D. | 4$\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -1≤a≤1 | B. | -$\frac{1}{2}$$≤a≤\frac{1}{2}$ | C. | $-\sqrt{2}≤a≤\sqrt{2}$ | D. | $-\frac{\sqrt{2}}{2}≤a≤\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 34 | B. | 25 | C. | 16 | D. | 61 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com