分析 (1)過(guò)點(diǎn)B作BM⊥x軸于點(diǎn)M,根據(jù)“強(qiáng)等距點(diǎn)”的定義可得出∠ABO=120°,BO=BA,根據(jù)等腰三角形的性質(zhì)以及特殊角的三角函數(shù)值即可求出線段OM、BM的長(zhǎng)度,再由點(diǎn)B在第一象限即可得出結(jié)論;
(2)結(jié)合(1)的結(jié)論以及“等距點(diǎn)”的定義,即可得出t的取值范圍;
(3)根據(jù)“等距點(diǎn)”和“強(qiáng)等距點(diǎn)”的定義可得出相等的線段和角,在直角三角形中利用特殊角的三角函數(shù)值即可求出點(diǎn)E的坐標(biāo),再通過(guò)平行線的性質(zhì)找出點(diǎn)D的坐標(biāo)即可.
解答 解:(1)過(guò)點(diǎn)B作BM⊥x軸于點(diǎn)M,如圖1所示.![]()
∵點(diǎn)B是線段OA的“強(qiáng)等距點(diǎn)”,
∴∠ABO=120°,BO=BA,
∵BM⊥x軸于點(diǎn)M,
∴OM=AM=$\frac{1}{2}$OA=$\sqrt{3}$,∠OBM=$\frac{1}{2}$∠ABO=60°.
在Rt△OBM中,OM=$\sqrt{3}$,∠OBM=60°,
∴BM=$\frac{OM}{tan∠OBM}$=1.
∴點(diǎn)B的坐標(biāo)為($\sqrt{3}$,1)或($\sqrt{3}$,-1),
∵點(diǎn)B在第一象限,
∴B($\sqrt{3}$,1).
故答案為:($\sqrt{3}$,1).
(2)由(1)可知:線段OA的“強(qiáng)等距點(diǎn)”坐標(biāo)為($\sqrt{3}$,-1)或($\sqrt{3}$,1).
∵C是線段OA的“等距點(diǎn)”,
∴點(diǎn)C在點(diǎn)($\sqrt{3}$,1)的上方或點(diǎn)($\sqrt{3}$,-1)下方,
∴t≥1或t≤-1.
故答案為:t≥1或t≤-1.
(3)根據(jù)題意畫出圖形,如圖2所示.![]()
∵點(diǎn)E是線段OA的“等距點(diǎn)”,
∴EO=EA,
∴點(diǎn)E在線段OA的垂直平分線上.設(shè)線段OA的垂直平分線交x軸于點(diǎn)F.
∵A(2$\sqrt{3}$,0),
∴F($\sqrt{3}$,0).
∵點(diǎn)E是線段OD的“強(qiáng)等距點(diǎn)”,
∴EO=ED,且∠OED=120°,
∴∠EOD=∠EDO=30°.
∵點(diǎn)E在第四象限,
∴∠EOA=60°.
∴在Rt△OEF中,EF=OF•tan∠EOA=3,OE=$\frac{OF}{cos∠EOA}$=2$\sqrt{3}$.
∴E($\sqrt{3}$,-3).
∴DE=OE=2$\sqrt{3}$.
∵∠AOD=∠EOD=30°,
∴ED∥OA.
∴D(3$\sqrt{3}$,-3).
點(diǎn)評(píng) 本題考查了解直角三角形、特殊角的三角形函數(shù)值、等腰三角形的性質(zhì)以及平行線的判定及性質(zhì),解題的關(guān)鍵是:(1)求出線段OM、BM的長(zhǎng)度;(2)求出點(diǎn)C為“強(qiáng)等距點(diǎn)”時(shí)得坐標(biāo);(3)求出點(diǎn)E的坐標(biāo).本題屬于中檔題,難度不大,解決該題型題目時(shí),讀懂題意明白“等距點(diǎn)”和“強(qiáng)等距點(diǎn)”的性質(zhì)是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | ±$\sqrt{5}$ | B. | $\sqrt{5}$ | C. | -$\sqrt{5}$ | D. | ±5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | x≥4 | B. | x<m | C. | x≥m | D. | x≤1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 11 cm | B. | 7.5 cm | C. | 11 cm或7.5 cm | D. | 以上都不對(duì) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\sqrt{15}$ | B. | $\sqrt{12}$ | C. | $\sqrt{\frac{1}{3}}$ | D. | $\sqrt{9}$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com