| A. | 24 | B. | 24或8$\sqrt{5}$ | C. | 48或16$\sqrt{5}$ | D. | 8$\sqrt{5}$ |
分析 由x2-16x+60=0,可利用因式分解法求得x的值,然后分別從x=6時,是等腰三角形;與x=10時,是直角三角形去分析求解即可求得答案.
解答
解:∵x2-16x+60=0,
∴(x-6)(x-10)=0,
解得:x1=6,x2=10,
當(dāng)x=6時,則三角形是等腰三角形,如圖①,AB=AC=6,BC=8,AD是高,
∴BD=4,AD=$\sqrt{A{B}^{2}-B{D}^{2}}$=2$\sqrt{5}$,
∴S△ABC=$\frac{1}{2}$BC•AD=$\frac{1}{2}$×8×2$\sqrt{5}$=8$\sqrt{5}$;
當(dāng)x=10時,如圖②,AC=6,BC=8,AB=10,
∵AC2+BC2=AB2,
∴△ABC是直角三角形,∠C=90°,
S△ABC=$\frac{1}{2}$BC•AC=$\frac{1}{2}$×8×6=24.
∴該三角形的面積是:24或8$\sqrt{5}$.
故選:B.
點評 本題考查的是利用因式分解法解一元二次方程,等腰三角形的性質(zhì),勾股定理及其逆定理,解答此題時要注意分類討論,不要漏解.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 8 | B. | 9 | C. | 10 | D. | 11 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 90°+65° | B. | 90°+2×65° | C. | 180°-65° | D. | 180°-2×65° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | -2.5和-3之間 | B. | -3和-3.5之間 | C. | -3.5和-4之間 | D. | -4和-4.5 之間 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 肯定沒有同一個班級的學(xué)生 | |
| B. | 可能有兩名同學(xué)在一班級,但可能很小 | |
| C. | 至少有三名學(xué)生在同一個班級 | |
| D. | 至少有兩名學(xué)生在同一個班級 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com