分析 先利用高的定義得到∠BEC=∠BDC=90°,再利用等角的余角相等得到∠ABD=∠ACE,加上∠A=∠A,根據(jù)有兩組角對應(yīng)相等的兩個三角形相似可判斷△ABD∽△ACE,利用同樣的方法得到△FBE∽△ABD,△FCD∽△ACE,所以△ABD∽△ACE∽△FBE∽△FCD.
解答 解:△ABD∽△ACE,
理由:∵高BD、CE相交于點O,
∴∠BEC=∠BDC=90°,![]()
∵∠BOE=∠COD,
∴∠ABD=∠ACE,
∵∠A=∠A,
∴△ABD∽△ACE,
∵∠ABD=∠OBE,∠BEO=∠BDA,
∴△OBE∽△ABD,
同理可得△OCD∽△ACE,
∴△ABD∽△ACE∽△OBE∽△OCD.
故圖中相似三角形有4對.
點評 本題考查相似三角形的判定,關(guān)鍵是熟記三角形的判定定理,根據(jù)定理進(jìn)行證明求解.
科目:初中數(shù)學(xué) 來源: 題型:解答題
| t(秒) | 0 | 0.16 | 0.2 | 0.4 | 0.6 | 0.64 | 0.8 | … |
| x(米) | 0 | 0.4 | 0.5 | 1 | 1.5 | 1.6 | 2 | … |
| y(米) | 0.25 | 0.378 | 0.4 | 0.45 | 0.4 | 0.378 | 0.25 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com