分析 (1)先證明∠ACP=∠BCE,然后依據(jù)SAS證明△ACP≌△BCE,由全等三角形的性質(zhì)可得到BE=AP;
(2)過點C作CH⊥BE,垂足為H,先依據(jù)等腰三角形三線合一的性質(zhì)求得∠CAD=30°,然后由△ACP≌△BCE可求得∠CBH=30°,依據(jù)含30°直角三角形的性質(zhì)可求得CH的長,從而可求得BH的長,然后在△ECH中依據(jù)勾股定理可求得EH的長,故此可求得BE的長,最后根據(jù)AP=BE求解即可;
(3)首先根據(jù)題意畫出圖形,過點C作CH⊥BE,垂足為H.先證△ACP≌△BCE,從而得到∠CBH=30°,由含30°直角三角形的性質(zhì)可求得CH的長,依據(jù)勾股定理可求得FH的長,然后由等腰三角形三線合一的性質(zhì)可得到HE=FH,故此可求得EF的長.
解答 解:(1)BE=AP.
理由:∵△ABC和△CPE均為等邊三角形,
∴∠ACB=∠PCE=60°,AC=BC,CP=CE.
∵∠ACP+∠DCP=∠DCE+∠PCD=60°,
∴∠ACP=∠BCE.
∵在△ACP和△BCE中,$\left\{\begin{array}{l}{AC=BC}\\{∠ACP=∠BCE}\\{PC=EC}\end{array}\right.$,
∴△ACP≌△BCE.
∴BE=AP.
(2)如圖2所示:過點C作CH⊥BE,垂足為H.![]()
∵AB=AC,AD是BC的中點,
∴∠CAD=∠BAD=$\frac{1}{2}$∠BAC=30°.
∵由(1)可知:△ACP≌△BCE,
∴∠CBE=∠CAD=30°,AP=BE.
∵在Rt△BCH中,∠HBC=30°,
∴HC=$\frac{1}{2}$BC=3,NH=$\frac{\sqrt{3}}{2}$BC=3$\sqrt{3}$.
∵在Rt△CEH中,EC=5,CH=3,
∴EH=$\sqrt{C{E}^{2}-C{H}^{2}}$=4.
∴BE=HB-EH=3$\sqrt{3}$-4.
∴A=3$\sqrt{3}$-4.
(3)如圖3所示:過點C作CH⊥BE,垂足為H.![]()
∵△ABC和△CEP均為等邊三角形,
∴AC=BC,CE=PC,∠ACB=∠ECP.
∴∠ACB+∠BCP=∠ECP+BCP,即∠BCE=∠ACP.
∵在△ACP和△BCE中,$\left\{\begin{array}{l}{AC=BC}\\{∠ACP=∠BCE}\\{PC=CE}\end{array}\right.$,
∴△ACP≌△BCE.
∴∠CBH=∠CAP=30°.
∵在Rt△BCH中,∠CBH=30°,
∴HC=$\frac{1}{2}$BC=3.
∵FC=CE,CH⊥FE,
∴FH=EH.
∴FH=EH=$\sqrt{C{E}^{2}-H{C}^{2}}$=4.
∴EF=FH+EH=4+4=8.
點評 本題主要考查的是全等三角形的性質(zhì)和判定、勾股定理的應用、等邊三角形的性質(zhì)、含30°三角形的性質(zhì),證得△ACP≌△BCE是解題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | y=-(x+3)2+1 | B. | y=-(x+1)2+3 | C. | y=-(x-1)2+4 | D. | y=-(x+1)2+4 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com