科目: 來源: 題型:
【題目】設橢圓
的右焦點為
,右頂點為
.已知
,其中
為原點,
為橢圓的離心率.
(1)求橢圓的方程及離心率
的值;
(2)設過點
的直線
與橢圓交于點
(
不在
軸上),垂直于
的直線與
交于點
,與
軸交于點
.若
,且
,求直線
的斜率的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】田忌賽馬是《史記》中記載的一個故事,說的是齊國大將軍田忌經常與齊國眾公子賽馬,孫臏發(fā)現田忌的馬和其他人的馬相差并不遠,都分為上、中、下三等.于是孫臏給田忌將軍獻策:比賽即將開始時,他讓田忌用下等馬對戰(zhàn)公子們的上等馬,用上等馬對戰(zhàn)公子們的中等馬,用中等馬對戰(zhàn)公子們的下等馬,從而使田忌贏得了許多賭注.假設田忌的各等級馬與某公子的各等級馬進行一場比賽,田忌獲勝的概率如下表所示:
![]()
比賽規(guī)則規(guī)定:一次比賽由三場賽馬組成,每場由公子和田忌各出一匹馬參賽,結果只有勝和負兩種,并且毎一方三場賽馬的馬的等級各不相同,三場比賽中至少獲勝兩場的一方為最終勝利者.
(1)如果按孫臏的策略比賽一次,求田忌獲勝的概率;
(2)如果比賽約定,只能同等級馬對戰(zhàn),每次比賽賭注1000金,即勝利者贏得對方1000金,每月比賽一次,求田忌一年賽馬獲利的數學期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】學校藝術節(jié)對
四件參賽作品只評一件一等獎,在評獎揭曉前,甲,乙,丙,丁四位同學對這四件參賽作品預測如下:
甲說:“是
或
作品獲得一等獎”; 乙說:“
作品獲得一等獎”;
丙說:“
兩件作品未獲得一等獎”; 丁說:“是
作品獲得一等獎”.
評獎揭曉后,發(fā)現這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是_________.
查看答案和解析>>
科目: 來源: 題型:
【題目】(選修4-4:坐標系與參數方程)
在直角坐標系
中,半圓C的參數方程為
(
為參數,
),以O為極點,x軸的非負半軸為極軸建立極坐標系.
(Ⅰ)求C的極坐標方程;
(Ⅱ)直線
的極坐標方程是
,射線OM:
與半圓C的交點為O、P,與直線
的交點為Q,求線段PQ的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓
的焦距為
,且過點
.
(1)求橢圓的方程;
(2)已知
,是否存在k使得點A關于l的對稱點B(不同于點A)在橢圓C上?若存在求出此時直線l的方程,若不存在說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】
在某次考試中,從甲乙兩個班各抽取10名學生的數學成績進行統(tǒng)計分析,兩個班成績的莖葉圖如圖所示,成績不小于90分的為及格.
![]()
(1)用樣本估計總體,請根據莖葉圖對甲乙兩個班級的成績進行比較.
(2)求從甲班10名學生和乙班10名學生中各抽取一人,已知有人及格的條件下乙班同學不及格的概率;
(3)從甲班10人中抽取一人,乙班10人中抽取二人,三人中及格人數記為X,求X的分布列和期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知曲線
的參數方程為
(
為參數),在同一平面直角坐標系中,將曲線
上的點按坐標變換
得到曲線
,以原點為極點,
軸的正半軸為極軸,建立極坐標系.設
點的極坐標為
.
(1)求曲線
的極坐標方程;
(2)若過點
且傾斜角為
的直線
與曲線
交于
兩點,求
的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系
中,直線
的參數方程為
(
為參數),曲線
的參數方程為
(
為參數),曲線
與
軸交于
兩點.以坐標原點
為極點,
軸正半軸為極軸建立極坐標系.
(1)求直線
的普通方程及曲線
的極坐標方程;
(2)若直線
與曲線
在第一象限交于點
,且線段
的中點為
,點
在曲線
上,求
的最小值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com