欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

相關(guān)習(xí)題
 0  246528  246536  246542  246546  246552  246554  246558  246564  246566  246572  246578  246582  246584  246588  246594  246596  246602  246606  246608  246612  246614  246618  246620  246622  246623  246624  246626  246627  246628  246630  246632  246636  246638  246642  246644  246648  246654  246656  246662  246666  246668  246672  246678  246684  246686  246692  246696  246698  246704  246708  246714  246722  266669 

科目: 來(lái)源: 題型:解答題

9.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,一個(gè)焦點(diǎn)與拋物線y2=4x的焦點(diǎn)重合,直線l:y=kx+m與橢圓C相交于A、B兩點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),kOA•kOB=-$\frac{^{2}}{{a}^{2}}$,判斷△AOB的面積是否為定值?若是,求出定值,若不是,說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

8.已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為$\frac{\sqrt{3}}{2}$,且經(jīng)過(guò)點(diǎn)M(4,1).
(1)求橢圓的方程;
(2)若不過(guò)點(diǎn)M的直線l:y=x+m交橢圓于A、B兩點(diǎn),試問(wèn)直線MA、MB與x軸能否圍成等腰三角形?

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

7.已知橢圓的中心是坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,離心率為$\frac{\sqrt{2}}{2}$,坐標(biāo)原點(diǎn)O到過(guò)右焦點(diǎn)F且斜率為1的直線的距離為$\frac{\sqrt{2}}{2}$.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過(guò)右焦點(diǎn)F且與坐標(biāo)軸不垂直的直線l交橢圓于P、Q兩點(diǎn),在線段OF上是否存在點(diǎn)M(m,0),使得|MP|=|MQ|?若存在,求出m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

6.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{2}}{2}$,左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P的坐標(biāo)為(2,$\sqrt{3}$),點(diǎn)F2在線段PF1的垂直平分線上.
(1)求橢圓E的方程;
(2)設(shè)l1,l2是過(guò)點(diǎn)G($\frac{3}{2}$,0)且互相垂直的兩條直線,l1交E于A,B兩點(diǎn),l2交E于C,D兩點(diǎn),求l1的斜率k的取值范圍;
(3)在(2)的條件下,設(shè)AB,CD的中點(diǎn)分別為M,N.證明:直線MN恒過(guò)一定點(diǎn).

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

5.設(shè)函數(shù)f(x)=ax3+bx+c(a≠0)為奇函數(shù),其圖象在點(diǎn)(1,f(1))處的切線與直線6x+y-3=0平行,導(dǎo)函數(shù)f′(x)的最小值為-12.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間,并求函數(shù)f(x)在[-2,$\sqrt{3}$]上的最大值和最小值.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

4.已知橢圓$\frac{{x}^{2}}{49}$+$\frac{{y}^{2}}{24}$=1的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,P為橢圓上一點(diǎn),且PF1⊥PF2,則|PF1|•|PF2|的值為( 。
A.48B.24C.36D.25

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{6}}{3}$,F(xiàn)1,F(xiàn)2分別為橢圓左右焦點(diǎn),A為橢圓的短軸端點(diǎn)且|AF1|=$\sqrt{6}$
(1)求橢圓C的方程;
(2)過(guò)F2作直線l角橢圓C于P,Q兩點(diǎn),求△PQF1的面積的最大值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=ax2+2x-lnx(a∈R).
(Ⅰ)若a=4,求函數(shù)f(x)的極值;
(Ⅱ)若f′(x)在(0,1)有唯一的零點(diǎn)x0,求a的取值范圍;
(Ⅲ)若a∈(-$\frac{1}{2}$,0),設(shè)g(x)=a(1-x)2-2x-1-ln(1-x),求證:g(x)在(0,1)內(nèi)有唯一的零點(diǎn)x1,且對(duì)(Ⅱ)中的x0,滿足x0+x1>1.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

1.如圖,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分別是AB,AC,BC的中點(diǎn),且MN與AD交于F.
(1)求:$\overrightarrow{DF}$.
(2)求∠BAC的余弦值.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

20.設(shè)F1,F(xiàn)2分別是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),若在直線x=$\frac{{a}^{2}}{c}$(其中c2+b2=a2)上存在點(diǎn)P,使線段PF1的垂直平分線經(jīng)過(guò)點(diǎn)F2,則橢圓離心率的取值范圍是(  )
A.(0,$\frac{\sqrt{2}}{2}$]B.(0,$\frac{\sqrt{3}}{3}$]C.[$\frac{\sqrt{3}}{3}$,1)D.[$\frac{\sqrt{2}}{2}$,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案