科目: 來源: 題型:解答題
如圖,橢圓的右焦點
與拋物線
的焦點重合,過
且于x軸垂直的直線與橢圓交于S,T,與拋物線交于C,D兩點,且![]()
![]()
(1)求橢圓的標準方程;
(2)設(shè)P為橢圓上一點,若過點M(2,0)的直線
與橢圓相交于不同兩點A和B,且滿足
(O為坐標原點),求實數(shù)t的取值范圍.
查看答案和解析>>
科目: 來源: 題型:解答題
橢圓
的方程為
,離心率為
,且短軸一端點和兩焦點構(gòu)成的三角形面積為1,拋物線
的方程為
,拋物線的焦點F與橢圓的一個頂點重合.
(1)求橢圓
和拋物線
的方程;
(2)過點F的直線交拋物線
于不同兩點A,B,交y軸于點N,已知
的值.
(3)直線
交橢圓
于不同兩點P,Q,P,Q在x軸上的射影分別為P′,Q′,滿足
(O為原點),若點S滿足
,判定點S是否在橢圓
上,并說明理由.
查看答案和解析>>
科目: 來源: 題型:解答題
已知橢圓
的右焦點為F,A為短軸的一個端點,且
,
的面積為1(其中
為坐標原點).
(1)求橢圓的方程;
(2)若C、D分別是橢圓長軸的左、右端點,動點M滿足
,連結(jié)CM,交橢圓于點
,證明:
為定值;
(3)在(2)的條件下,試問
軸上是否存在異于點C的定點Q,使得以MP為直徑的圓恒過直線DP、MQ的交點,若存在,求出點Q的坐標;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖所示,已知
、
、
是長軸長為
的橢圓
上的三點,點
是長軸的一個端點,
過橢圓中心
,且
,
.![]()
(1)求橢圓
的方程;
(2)在橢圓
上是否存點
,使得
?若存在,有幾個(不必求出
點的坐標),若不存在,請說明理由;
(3)過橢圓
上異于其頂點的任一點
,作圓
的兩條線,切點分別為
、
,,若直線
在
軸、
軸上的截距分別為
、
,證明:
為定值.
查看答案和解析>>
科目: 來源: 題型:解答題
(1)已知定點
、
,動點N滿足
(O為坐標原點),
,
,
,求點P的軌跡方程.
(2)如圖,已知橢圓
的上、下頂點分別為
,點
在橢圓上,且異于點
,直線
與直線
分別交于點
,![]()
(。┰O(shè)直線
的斜率分別為
、
,求證:
為定值;
(ⅱ)當點
運動時,以
為直徑的圓是否經(jīng)過定點?請證明你的結(jié)論.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖所示,已知A、B、C是長軸長為4的橢圓E上的三點,點A是長軸的一個端點,BC過橢圓中心O,且
,|BC|=2|AC|.![]()
(1)求橢圓E的方程;
(2)在橢圓E上是否存點Q,使得
?若存在,有幾個(不必求出Q點的坐標),若不存在,請說明理由.
(3)過橢圓E上異于其頂點的任一點P,作
的兩條切線,切點分別為M、N,若直線MN在x軸、y軸上的截距分別為m、n,證明:
為定值.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,![]()
已知橢圓E:
的離心率為
,過左焦點
且斜率為
的直線交
橢圓E于A,B兩點,線段AB的中點為M,直線
:
交橢圓E于C,D兩點.
(1)求橢圓E的方程;
(2)求證:點M在直線
上;
(3)是否存在實數(shù)
,使得四邊形AOBC為平行四邊形?若存在求出
的值,若不存在說明理
由.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,已知橢圓E:
的離心率為
,過左焦點
且斜率為
的直線交橢圓E于A,B兩點,線段AB的中點為M,直線
:
交橢圓E于C,D兩點.![]()
(1)求橢圓E的方程;
(2)求證:點M在直線
上;
(3)是否存在實數(shù)k,使得三角形BDM的面積是三角形ACM的3倍?若存在,求出k的值;
若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,已知點
為橢圓![]()
右焦點,圓![]()
與橢圓
的一個公共點為
,且直線
與圓
相切于點
.![]()
(1)求
的值及橢圓
的標準方程;
(2)設(shè)動點
滿足
,其中M、N是橢圓
上的點,
為原點,直線OM與ON的斜率之積為
,求證:
為定值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com