橢圓
的方程為
,離心率為
,且短軸一端點(diǎn)和兩焦點(diǎn)構(gòu)成的三角形面積為1,拋物線
的方程為
,拋物線的焦點(diǎn)F與橢圓的一個(gè)頂點(diǎn)重合.
(1)求橢圓
和拋物線
的方程;
(2)過(guò)點(diǎn)F的直線交拋物線
于不同兩點(diǎn)A,B,交y軸于點(diǎn)N,已知
的值.
(3)直線
交橢圓
于不同兩點(diǎn)P,Q,P,Q在x軸上的射影分別為P′,Q′,滿足
(O為原點(diǎn)),若點(diǎn)S滿足
,判定點(diǎn)S是否在橢圓
上,并說(shuō)明理由.
(1)
(2)-1(3)見(jiàn)解析
解析試題分析:
(1)根據(jù)題意設(shè)出橢圓
的方程,題目已知離心率即可得到
的值,根據(jù)橢圓的幾何性質(zhì),短軸端點(diǎn)與兩焦點(diǎn)構(gòu)成的三角形以焦距為底邊長(zhǎng),以短半軸長(zhǎng)為高,即該三角形的面積為
,再根據(jù)
之間的關(guān)系即可求出
的值,得到橢圓的標(biāo)準(zhǔn)方程.拋物線
的交點(diǎn)在x軸的正半軸,故拋物線的焦點(diǎn)為橢圓的右頂點(diǎn)
,即可求出
得到拋物線的方程.
(2)討論直線AB的斜率,當(dāng)斜率不存在時(shí)與y軸沒(méi)有交點(diǎn),所以不符合題意,則斜率存在,設(shè)直線AB的斜率為k得到直線AB的方程,聯(lián)立直線與拋物線的方程得到AB兩點(diǎn)橫坐標(biāo)的韋達(dá)定理,把向量的橫坐標(biāo)帶入
向量的坐標(biāo)表示得到
之間的關(guān)系為
反解
,帶入
,利用
(韋達(dá)定理)帶入
即可得到
為定值.
(3)設(shè)出P,Q兩點(diǎn)的坐標(biāo),則可以得到
的坐標(biāo),帶入條件
得到P,Q橫縱坐標(biāo)之間的關(guān)系,因?yàn)镻,Q在橢圓上,則滿足橢圓的方程,這兩個(gè)條件得到的三個(gè)式子相加配方即可證明點(diǎn)S在橢圓上,即滿足橢圓的方程.
試題解析:
(1)由題意,橢圓
的方程為![]()
,又![]()
解得
,∴橢圓
的方程是
.由此可知拋物線
的焦點(diǎn)為![]()
,得
,所以拋物線
的方程為
. 4分
(2)
是定值,且定值為
,由題意知,
直線的斜率
存在且不為
,設(shè)直線
的方程為
,
則
聯(lián)立方程組
消去
得:![]()
且
,由
,
得
整理得
可得
. 9分
(3)設(shè)
則![]()
由
得
①
將點(diǎn)
坐標(biāo)帶入橢圓方程得,
②
③
由①+②+③得![]()
所以點(diǎn)
滿足橢圓
的方程,所以點(diǎn)
在橢圓
上. 13分
考點(diǎn):拋物線橢圓根與系數(shù)的關(guān)系
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知橢圓
的左、右焦點(diǎn)分別為
,其上頂點(diǎn)為
已知
是邊長(zhǎng)為
的正三角形.![]()
(1)求橢圓
的方程;
(2)過(guò)點(diǎn)
任作一動(dòng)直線
交橢圓
于
兩點(diǎn),記
.若在線段
上取一點(diǎn)
,使得
,當(dāng)直線
運(yùn)動(dòng)時(shí),點(diǎn)
在某一定直線上運(yùn)動(dòng),求出該定直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線
,直線
,
是拋物線的焦點(diǎn)。![]()
(1)在拋物線上求一點(diǎn)
,使點(diǎn)
到直線
的距離最。
(2)如圖,過(guò)點(diǎn)
作直線交拋物線于A、B兩點(diǎn).
①若直線AB的傾斜角為
,求弦AB的長(zhǎng)度;
②若直線AO、BO分別交直線
于
兩點(diǎn),求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系xOy中,設(shè)曲線C1:
所圍成的封閉圖形的面積為
,曲線C1上的點(diǎn)到原點(diǎn)O的最短距離為
.以曲線C1與坐標(biāo)軸的交點(diǎn)為頂點(diǎn)的橢圓記為C2.
(1)求橢圓C2的標(biāo)準(zhǔn)方程;
(2)設(shè)AB是過(guò)橢圓C2中心O的任意弦,l是線段AB的垂直平分線.M是l上的點(diǎn)(與O不重合).
①若MO=2OA,當(dāng)點(diǎn)A在橢圓C2上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡方程;
②若M是l與橢圓C2的交點(diǎn),求△AMB的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,![]()
已知橢圓E:
的離心率為
,過(guò)左焦點(diǎn)
且斜率為
的直線交
橢圓E于A,B兩點(diǎn),線段AB的中點(diǎn)為M,直線
:
交橢圓E于C,D兩點(diǎn).
(1)求橢圓E的方程;
(2)求證:點(diǎn)M在直線
上;
(3)是否存在實(shí)數(shù)
,使得四邊形AOBC為平行四邊形?若存在求出
的值,若不存在說(shuō)明理
由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,橢圓C:
的左頂點(diǎn)為A,M是橢圓C上異于點(diǎn)A的任意一點(diǎn),點(diǎn)P與點(diǎn)A關(guān)于點(diǎn)M對(duì)稱.![]()
(1)若點(diǎn)P的坐標(biāo)
,求m的值;
(2)若橢圓C上存在點(diǎn)M,使得
,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)橢圓![]()
的左、右焦點(diǎn)分別
、
,點(diǎn)
是橢圓短軸的一個(gè)端點(diǎn),且焦距為6,
的周長(zhǎng)為16.
(I)求橢圓
的方程;
(2)求過(guò)點(diǎn)
且斜率為
的直線
被橢圓
所截的線段的中點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓
,若橢圓
的右頂點(diǎn)為圓
的圓心,離心率為
.
(1)求橢圓C的方程;
(2)若存在直線
,使得直線
與橢圓
分別交于
兩點(diǎn),與圓
分別交于
兩點(diǎn),點(diǎn)
在線段
上,且
,求圓
的半徑
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C的方程為
=1(a>b>0),雙曲線
=1的兩條漸近線為l1、l2,過(guò)橢圓C的右焦點(diǎn)F作直線l,使l⊥l1.又l與l2交于P點(diǎn),設(shè)l與橢圓C的兩個(gè)交點(diǎn)由上至下依次為A、B(如圖).![]()
(1)當(dāng)l1與l2夾角為60°,雙曲線的焦距為4時(shí),求橢圓C的方程;
(2)當(dāng)
=λ
,求λ的最大值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com