如圖,已知橢圓E:
的離心率為
,過(guò)左焦點(diǎn)
且斜率為
的直線交橢圓E于A,B兩點(diǎn),線段AB的中點(diǎn)為M,直線
:
交橢圓E于C,D兩點(diǎn).![]()
(1)求橢圓E的方程;
(2)求證:點(diǎn)M在直線
上;
(3)是否存在實(shí)數(shù)k,使得三角形BDM的面積是三角形ACM的3倍?若存在,求出k的值;
若不存在,說(shuō)明理由.
(1)
;(2)證明過(guò)程詳見(jiàn)解析;(3)存在.
解析試題分析:本題主要考查橢圓的標(biāo)準(zhǔn)方程、直線與橢圓的相交問(wèn)題、韋達(dá)定理、中點(diǎn)坐標(biāo)公式等基礎(chǔ)知識(shí),考查學(xué)生的分析問(wèn)題解決問(wèn)題的能力、轉(zhuǎn)化能力、計(jì)算能力.第一問(wèn),利用已知的離心率和左焦點(diǎn)坐標(biāo),得到基本量a,b,c的值,從而得到橢圓的標(biāo)準(zhǔn)方程;第二問(wèn),設(shè)出點(diǎn)A、B、M的坐標(biāo)和直線的方程,令直線的方程與橢圓的方程聯(lián)立,利用所得方程,根據(jù)韋達(dá)定理得到
,從而得到
的坐標(biāo),
由直線方程獲得,驗(yàn)證
是否在
上即可;第三問(wèn),數(shù)形結(jié)合,根據(jù)已知條件將題目轉(zhuǎn)化為C點(diǎn)坐標(biāo)
與M點(diǎn)坐標(biāo)
的關(guān)系,通過(guò)直線與橢圓聯(lián)立消參,得到
的坐標(biāo),令
,解出k的值,k有解,即存在.
試題解析:(1)由題意可知
,
,于是
.
所以,橢圓的標(biāo)準(zhǔn)方程為
程. 3分
(2)設(shè)
,
,
,
即
.
所以,
,
,
,
于是
.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/7c/7/qosnh3.png" style="vertical-align:middle;" />,所以
在直線
上. 8分
(3)由(2)知點(diǎn)A到直線CD的距離與點(diǎn)B到直線CD的距離相等,
若∆BDM的面積是∆ACM面積的3倍,
則|DM|=3|CM|,因?yàn)閨OD|=|OC|,于是M為OC中點(diǎn),;
設(shè)點(diǎn)C的坐標(biāo)為
,則
.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/31/5/1lhmh3.png" style="vertical-align:middle;" />,解得
.
于是
,解得
,所以
. 14分
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程、直線與橢圓的相交問(wèn)題、韋達(dá)定理、中點(diǎn)坐標(biāo)公式.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知曲線
的方程為
,過(guò)原點(diǎn)作斜率為
的直線和曲線
相交,另一個(gè)交點(diǎn)記為
,過(guò)
作斜率為
的直線與曲線
相交,另一個(gè)交點(diǎn)記為
,過(guò)
作斜率為
的直線與曲線
相交,另一個(gè)交點(diǎn)記為
,如此下去,一般地,過(guò)點(diǎn)
作斜率為
的直線與曲線
相交,另一個(gè)交點(diǎn)記為
,設(shè)點(diǎn)
(
).
(1)指出
,并求
與
的關(guān)系式(
);
(2)求
(
)的通項(xiàng)公式,并指出點(diǎn)列
,
, ,
, 向哪一點(diǎn)無(wú)限接近?說(shuō)明理由;
(3)令
,數(shù)列
的前
項(xiàng)和為
,設(shè)
,求所有可能的乘積
的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,點(diǎn)
是橢圓
的一個(gè)頂點(diǎn),
的長(zhǎng)軸是圓
的直徑,
、
是過(guò)點(diǎn)
且互相垂直的兩條直線,其中
交圓
于
、
兩點(diǎn),
交橢圓
于另一點(diǎn)
.![]()
(1)求橢圓
的方程;
(2)求
面積的最大值及取得最大值時(shí)直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn)
點(diǎn)
分別是
軸和
軸上的動(dòng)點(diǎn),且
,動(dòng)點(diǎn)
滿足
,設(shè)動(dòng)點(diǎn)
的軌跡為E.
(1)求曲線E的方程;
(2)點(diǎn)Q(1,a),M,N為曲線E上不同的三點(diǎn),且
,過(guò)M,N兩點(diǎn)分別作曲線E的切線,記兩切線的交點(diǎn)為
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
的離心率
,長(zhǎng)軸的左右端點(diǎn)分別為
,
.
(1)求橢圓
的方程;
(2)設(shè)動(dòng)直線
與曲線
有且只有一個(gè)公共點(diǎn)
,且與直線
相交于點(diǎn)
.問(wèn)在
軸上是否存在定點(diǎn)
,使得以
為直徑的圓恒過(guò)定點(diǎn)
,若存在,求出
點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
的右焦點(diǎn)為F,A為短軸的一個(gè)端點(diǎn),且
,
的面積為1(其中
為坐標(biāo)原點(diǎn)).
(1)求橢圓的方程;
(2)若C、D分別是橢圓長(zhǎng)軸的左、右端點(diǎn),動(dòng)點(diǎn)M滿足
,連結(jié)CM,交橢圓于點(diǎn)
,證明:
為定值;
(3)在(2)的條件下,試問(wèn)
軸上是否存在異于點(diǎn)C的定點(diǎn)Q,使得以MP為直徑的圓恒過(guò)直線DP、MQ的交點(diǎn),若存在,求出點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C的中心在原點(diǎn),一個(gè)焦點(diǎn)F(-2,0),且長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的比為
,
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)M(m,0)在橢圓C的長(zhǎng)軸上,設(shè)點(diǎn)P是橢圓上的任意一點(diǎn),若當(dāng)
最小時(shí),點(diǎn)P恰好落在橢圓的右頂點(diǎn),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,F1、F2分別為橢圓C:
的左、右兩個(gè)焦點(diǎn),A、B為兩個(gè)頂點(diǎn),該橢圓的離心率為
,
的面積為
.![]()
(1)求橢圓C的方程和焦點(diǎn)坐標(biāo);
(2)作與AB平行的直線
交橢圓于P、Q兩點(diǎn),
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,F(xiàn)是中心在原點(diǎn)、焦點(diǎn)在x軸上的橢圓C的右焦點(diǎn),直線l:x=4是橢圓C的右準(zhǔn)線,F(xiàn)到直線l的距離等于3.![]()
(1)求橢圓C的方程;
(2)點(diǎn)P是橢圓C上動(dòng)點(diǎn),PM⊥l,垂足為M.是否存在點(diǎn)P,使得△FPM為等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com