欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

19.如圖所示,F(xiàn)1和F2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩個(gè)焦點(diǎn),A和B是以O(shè)為圓心,以|OF1|為半徑的圓與該雙曲線左支的兩個(gè)交點(diǎn),且△F2AB是等邊三角形,則雙曲線的離心率為( 。
A.$\frac{\sqrt{5}}{2}$B.$\frac{3}{2}$C.$\sqrt{3}$D.$\sqrt{3}$+1

分析 連接AF1,根據(jù)△F2AB是等邊三角形可知∠AF2B=60°,F(xiàn)1F2是圓的直徑可表示出|AF1|、|AF2|,再由雙曲線的定義可得$\sqrt{3}$c-c=2a,從而可求雙曲線的離心率.

解答 解:連接AF1,則∠F1AF2=90°,∠AF2B=60°
∴|AF1|=c,|AF2|=$\sqrt{3}$c,
∴$\sqrt{3}$c-c=2a,
∴e=$\frac{2}{\sqrt{3}-1}$=$\sqrt{3}$+1,
故選:D.

點(diǎn)評(píng) 本題主要考查了雙曲線的簡(jiǎn)單性質(zhì).考查了學(xué)生綜合分析問(wèn)題和數(shù)形結(jié)合的思想的運(yùn)用,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.有10件產(chǎn)品,其中3件是次品,從這10件產(chǎn)品中任取兩件,用ξ表示取到次品的件數(shù),則E(ξ)等于( 。
A.$\frac{3}{5}$B.$\frac{8}{15}$C.$\frac{14}{15}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若3a=2b,則$\frac{2si{n}^{2}B-si{n}^{2}A}{si{n}^{2}A}$的值為$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的漸近線方程為y=±$\frac{3}{4}$x,且其右焦點(diǎn)F2(5,0),則雙曲線C的方程為( 。
A.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1B.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{9}$$-\frac{{y}^{2}}{16}$=1D.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列四個(gè)判斷
①某校高二一班和高二二班的人數(shù)分別是m,n,某次測(cè)試數(shù)學(xué)平均分分別是a,b,則這兩個(gè)班的數(shù)學(xué)平均分為$\frac{a+b}{2}$
②10名工人生產(chǎn)同一種零件,生產(chǎn)的件數(shù)分別是15,17,14,10,15,17,17,16,14,12,設(shè)其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則c>a>b
③設(shè)m∈R,命題“若a>b,則am2>bm2”的逆否命題為假命題
④線性相關(guān)系數(shù)r越大,兩個(gè)變量的線性相關(guān)性越強(qiáng),反之,線性相關(guān)性越弱
其中正確的個(gè)數(shù)有(  )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.a(chǎn),b為直線,α,β為平面,下列正確的是(  )
A.若a∥α,a∥β,則α∥βB.若a∥α,b⊆α,則a∥bC.若a∥α,a⊆β,則α∥βD.若a⊥α,a⊆β,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,在三棱錐A-BCD中,AD=BD,∠ABC=90°,點(diǎn)E,F(xiàn)分別在棱AB,AC上,點(diǎn)G為棱AD的中點(diǎn),平面EFG∥平面BCD.證明:
(Ⅰ)EF=$\frac{1}{2}$BC;
(Ⅱ)平面EFD⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.橢圓x2+2y2=4的離心率是$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知sinα+sinβ=$\frac{1}{4}$,cosα+cosβ=$\frac{1}{3}$,則sin(α+β)=$\frac{24}{25}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案