分析 先畫出滿足條件的平面區(qū)域,求出A的坐標(biāo),結(jié)合圖象求出z的最大值即可.
解答 解:畫出滿足約束條件$\left\{\begin{array}{l}{x-1≤0}\\{2x-y-1≥0}\\{x-2y-2≤0}\end{array}\right.$的平面區(qū)域,如圖示:![]()
由$\left\{\begin{array}{l}{x=1}\\{2x-y-1=0}\end{array}\right.$,解得A(1,1)
而z=x+3y可化為y=-$\frac{1}{3}$x+$\frac{z}{3}$,
由圖象得直線過(guò)A(1,1)時(shí)z最大,z的最大值是4,
故答案為:4.
點(diǎn)評(píng) 本題考察了簡(jiǎn)單的線性規(guī)劃問(wèn)題,考察數(shù)形結(jié)合思想,是一道中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{1}{2}$+$\frac{3}{2}$i | B. | $\frac{1}{2}$-$\frac{3}{2}$i | C. | $\frac{3}{2}$+$\frac{1}{2}$i | D. | $\frac{3}{2}$-$\frac{1}{2}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (0,$\frac{π}{2}$) | B. | ($\frac{π}{2}$,π) | C. | ($\frac{π}{4}$,$\frac{π}{2}$) | D. | (-$\frac{π}{4}$,$\frac{π}{4}$) |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com