| A. | (1,+∞) | B. | (1,8) | C. | (4,8) | D. | [4,8) |
分析 若函數(shù)f(x)=$\left\{\begin{array}{l}{a}^{x},x>1\\(4-\frac{a}{2})x+2,x≤1\end{array}\right.$是R上的增函數(shù),則$\left\{\begin{array}{l}a>1\\ 4-\frac{a}{2}>0\\ a≥4-\frac{a}{2}+2\end{array}\right.$,解得實數(shù)a的取值范圍
解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{a}^{x},x>1\\(4-\frac{a}{2})x+2,x≤1\end{array}\right.$是R上的增函數(shù),
∴$\left\{\begin{array}{l}a>1\\ 4-\frac{a}{2}>0\\ a≥4-\frac{a}{2}+2\end{array}\right.$,
解得:a∈[4,8),
故選:D.
點評 本題考查的知識點是分段函數(shù)的應(yīng)用,正確理解分段函數(shù)的單調(diào)性是解答的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2 | B. | $\frac{3}{2}$+$\sqrt{2}$ | C. | $\sqrt{2}$ | D. | 2-$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (-∞,4-2$\sqrt{7}$)∪(4+2$\sqrt{7}$,+∞) | B. | (4-2$\sqrt{7}$,4+2$\sqrt{7}$) | C. | (-$\frac{3}{2}$,-$\frac{4}{3}$) | D. | (-$\frac{3}{2}$,-$\frac{4}{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com